Standard

Sharp multiplicative inequalities with BMO I. / Stolyarov, Dmitriy; Vasyunin, Vasily; Zatitskiy, Pavel.

In: Journal of Mathematical Analysis and Applications, Vol. 492, No. 2, 124479, 15.12.2020.

Research output: Contribution to journalArticlepeer-review

Harvard

Stolyarov, D, Vasyunin, V & Zatitskiy, P 2020, 'Sharp multiplicative inequalities with BMO I', Journal of Mathematical Analysis and Applications, vol. 492, no. 2, 124479. https://doi.org/10.1016/j.jmaa.2020.124479

APA

Vancouver

Stolyarov D, Vasyunin V, Zatitskiy P. Sharp multiplicative inequalities with BMO I. Journal of Mathematical Analysis and Applications. 2020 Dec 15;492(2). 124479. https://doi.org/10.1016/j.jmaa.2020.124479

Author

Stolyarov, Dmitriy ; Vasyunin, Vasily ; Zatitskiy, Pavel. / Sharp multiplicative inequalities with BMO I. In: Journal of Mathematical Analysis and Applications. 2020 ; Vol. 492, No. 2.

BibTeX

@article{df9845d155cd446dbf3a963dcf6b4ac7,
title = "Sharp multiplicative inequalities with BMO I",
abstract = "We find the best possible constant C in the inequality [Formula presented], where 2⩽r and p",
keywords = "Bellman function, Bounded mean oscillation, Interpolation",
author = "Dmitriy Stolyarov and Vasily Vasyunin and Pavel Zatitskiy",
note = "Funding Information: Support by the Russian Science Foundation grant 19-71-10023. Publisher Copyright: {\textcopyright} 2020 Elsevier Inc. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.",
year = "2020",
month = dec,
day = "15",
doi = "10.1016/j.jmaa.2020.124479",
language = "English",
volume = "492",
journal = "Journal of Mathematical Analysis and Applications",
issn = "0022-247X",
publisher = "Elsevier",
number = "2",

}

RIS

TY - JOUR

T1 - Sharp multiplicative inequalities with BMO I

AU - Stolyarov, Dmitriy

AU - Vasyunin, Vasily

AU - Zatitskiy, Pavel

N1 - Funding Information: Support by the Russian Science Foundation grant 19-71-10023. Publisher Copyright: © 2020 Elsevier Inc. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2020/12/15

Y1 - 2020/12/15

N2 - We find the best possible constant C in the inequality [Formula presented], where 2⩽r and p

AB - We find the best possible constant C in the inequality [Formula presented], where 2⩽r and p

KW - Bellman function

KW - Bounded mean oscillation

KW - Interpolation

UR - http://www.scopus.com/inward/record.url?scp=85089487657&partnerID=8YFLogxK

U2 - 10.1016/j.jmaa.2020.124479

DO - 10.1016/j.jmaa.2020.124479

M3 - Article

AN - SCOPUS:85089487657

VL - 492

JO - Journal of Mathematical Analysis and Applications

JF - Journal of Mathematical Analysis and Applications

SN - 0022-247X

IS - 2

M1 - 124479

ER -

ID: 75214673