Standard

Sharp Inequalities for Seminorms Defined on Spaces of Periodic Functions. / Zhuk, V. V.

In: Journal of Mathematical Sciences (United States), Vol. 228, No. 6, 02.2018, p. 662-671.

Research output: Contribution to journalArticlepeer-review

Harvard

Zhuk, VV 2018, 'Sharp Inequalities for Seminorms Defined on Spaces of Periodic Functions', Journal of Mathematical Sciences (United States), vol. 228, no. 6, pp. 662-671. https://doi.org/10.1007/s10958-017-3654-3

APA

Vancouver

Author

Zhuk, V. V. / Sharp Inequalities for Seminorms Defined on Spaces of Periodic Functions. In: Journal of Mathematical Sciences (United States). 2018 ; Vol. 228, No. 6. pp. 662-671.

BibTeX

@article{20324c2d3cee4629994ee2654d56a5bb,
title = "Sharp Inequalities for Seminorms Defined on Spaces of Periodic Functions",
abstract = "We present a polynomial approximation method for realizing modified Landau–Kolmogorov type inequalities with small order derivatives. Bibliography: 6 titles.",
author = "Zhuk, {V. V.}",
note = "Zhuk, V.V. Sharp Inequalities for Seminorms Defined on Spaces of Periodic Functions. J Math Sci 228, 662–671 (2018). https://doi.org/10.1007/s10958-017-3654-3",
year = "2018",
month = feb,
doi = "10.1007/s10958-017-3654-3",
language = "English",
volume = "228",
pages = "662--671",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "6",

}

RIS

TY - JOUR

T1 - Sharp Inequalities for Seminorms Defined on Spaces of Periodic Functions

AU - Zhuk, V. V.

N1 - Zhuk, V.V. Sharp Inequalities for Seminorms Defined on Spaces of Periodic Functions. J Math Sci 228, 662–671 (2018). https://doi.org/10.1007/s10958-017-3654-3

PY - 2018/2

Y1 - 2018/2

N2 - We present a polynomial approximation method for realizing modified Landau–Kolmogorov type inequalities with small order derivatives. Bibliography: 6 titles.

AB - We present a polynomial approximation method for realizing modified Landau–Kolmogorov type inequalities with small order derivatives. Bibliography: 6 titles.

UR - http://www.scopus.com/inward/record.url?scp=85038628539&partnerID=8YFLogxK

U2 - 10.1007/s10958-017-3654-3

DO - 10.1007/s10958-017-3654-3

M3 - Article

AN - SCOPUS:85038628539

VL - 228

SP - 662

EP - 671

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 6

ER -

ID: 35266230