Research output: Contribution to journal › Article › peer-review
Sharp Bernstein Type Inequalities for Splines in the Mean Square Metrics. / Vinogradov, O. L.
In: Journal of Mathematical Sciences (United States), Vol. 215, No. 5, 2016, p. 595-600.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Sharp Bernstein Type Inequalities for Splines in the Mean Square Metrics
AU - Vinogradov, O. L.
N1 - Vinogradov, O.L. Sharp Bernstein Type Inequalities for Splines in the Mean Square Metrics. J Math Sci 215, 595–600 (2016). https://doi.org/10.1007/s10958-016-2865-3
PY - 2016
Y1 - 2016
N2 - We give an elementary proof of the sharp Bernstein type inequality(Formula presented.). Here n, r, s ∈ ℕ, f is a 2π-periodic spline of order r and of minimal defect with nodes jπ/n, j ∈ Z, δh sis the difference operator of order s with step h, and the Kmare the Favard constants. A similar inequality for the space L2(ℝ) is also established. Bibliography: 5 titles.
AB - We give an elementary proof of the sharp Bernstein type inequality(Formula presented.). Here n, r, s ∈ ℕ, f is a 2π-periodic spline of order r and of minimal defect with nodes jπ/n, j ∈ Z, δh sis the difference operator of order s with step h, and the Kmare the Favard constants. A similar inequality for the space L2(ℝ) is also established. Bibliography: 5 titles.
KW - Discrete Fourier Transform
KW - Spline Space
KW - Basic Spline
KW - Sharp Inequality
KW - Bernstein Inequality
UR - http://www.scopus.com/inward/record.url?scp=84965066773&partnerID=8YFLogxK
U2 - 10.1007/s10958-016-2865-3
DO - 10.1007/s10958-016-2865-3
M3 - Article
AN - SCOPUS:84965066773
VL - 215
SP - 595
EP - 600
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 5
ER -
ID: 15680280