Standard

Semicooperative games. / Petrosyan, L. A.

In: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, No. 2, 01.04.1998, p. 62-69.

Research output: Contribution to journalArticlepeer-review

Harvard

Petrosyan, LA 1998, 'Semicooperative games', Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, no. 2, pp. 62-69.

APA

Petrosyan, L. A. (1998). Semicooperative games. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, (2), 62-69.

Vancouver

Petrosyan LA. Semicooperative games. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. 1998 Apr 1;(2):62-69.

Author

Petrosyan, L. A. / Semicooperative games. In: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. 1998 ; No. 2. pp. 62-69.

BibTeX

@article{3e330c54cc6144cebdefd6e26a978168,
title = "Semicooperative games",
abstract = "The n-person differential game Γ(x0,T-t0) with prescribed duration and independent motions is considered. The regularization of the game is constructed which alters players payoffs along the so-called 'optimal trajectory' maximizing the sum of players payoffs. It is shown that in a regularized game Γα(x0,T-t0) there always exist the Nash equilibria with cooperative payoffs. Under some additional assumptions it is proved that these equilibria are strong, i.e. stable against deviations of coalitions.",
author = "Petrosyan, {L. A.}",
year = "1998",
month = apr,
day = "1",
language = "русский",
pages = "62--69",
journal = "ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ",
issn = "1025-3106",
publisher = "Издательство Санкт-Петербургского университета",
number = "2",

}

RIS

TY - JOUR

T1 - Semicooperative games

AU - Petrosyan, L. A.

PY - 1998/4/1

Y1 - 1998/4/1

N2 - The n-person differential game Γ(x0,T-t0) with prescribed duration and independent motions is considered. The regularization of the game is constructed which alters players payoffs along the so-called 'optimal trajectory' maximizing the sum of players payoffs. It is shown that in a regularized game Γα(x0,T-t0) there always exist the Nash equilibria with cooperative payoffs. Under some additional assumptions it is proved that these equilibria are strong, i.e. stable against deviations of coalitions.

AB - The n-person differential game Γ(x0,T-t0) with prescribed duration and independent motions is considered. The regularization of the game is constructed which alters players payoffs along the so-called 'optimal trajectory' maximizing the sum of players payoffs. It is shown that in a regularized game Γα(x0,T-t0) there always exist the Nash equilibria with cooperative payoffs. Under some additional assumptions it is proved that these equilibria are strong, i.e. stable against deviations of coalitions.

UR - http://www.scopus.com/inward/record.url?scp=0032036257&partnerID=8YFLogxK

M3 - статья

AN - SCOPUS:0032036257

SP - 62

EP - 69

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

SN - 1025-3106

IS - 2

ER -

ID: 36953238