Consider a pair of plane straight-line graphs whose edges are colored red and blue, respectively, and let n be the total complexity of both graphs. We present a O(n log n)-time O(n)-space technique to preprocess such a pair of graphs, that enables efficient searches among the red-blue intersections along edges of one of the graphs. Our technique has a number of applications to geometric problems. This includes: (1) a solution to the batched red-blue search problem [Dehne et al. 2006] in O(n log n) queries to the oracle; (2) an algorithm to compute the maximum vertical distance between a pair of 3D polyhedral terrains, one of which is convex, in O(n log n) time, where n is the total complexity of both terrains; (3) an algorithm to construct the Hausdorff Voronoi diagram of a family of point clusters in the plane in O((n+m) log3n) time and O(n + m) space, where n is the total number of points in all clusters and m is the number of crossings between all clusters; (4) an algorithm to construct the farthest-color Voronoi diagram of the corners of n disjoint axis-aligned rectangles in O(n log2n) time; (5) an algorithm to solve the stabbing circle problem for n parallel line segments in the plane in optimal O(n log n) time. All these results are new or improve on the best known algorithms.

Original languageEnglish
Title of host publicationAlgorithms and Data Structures - 15th International Symposium, WADS 2017, Proceedings
EditorsFaith Ellen, Antonina Kolokolova, Jorg-Rudiger Sack
PublisherSpringer Nature
Pages473-484
Number of pages12
ISBN (Print)9783319621265
DOIs
StatePublished - 1 Jan 2017
Event15th International Symposium on Algorithms and Data Structures, WADS 2017 - St. John’s, Canada
Duration: 31 Jul 20172 Aug 2017

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10389 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference15th International Symposium on Algorithms and Data Structures, WADS 2017
Country/TerritoryCanada
CitySt. John’s
Period31/07/172/08/17

    Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

ID: 38614347