Standard

Safety zones in differential games. / Mikheev, S. E.

In: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, No. 3, 01.12.2003, p. 69-78.

Research output: Contribution to journalArticlepeer-review

Harvard

Mikheev, SE 2003, 'Safety zones in differential games', Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, no. 3, pp. 69-78.

APA

Mikheev, S. E. (2003). Safety zones in differential games. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, (3), 69-78.

Vancouver

Mikheev SE. Safety zones in differential games. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. 2003 Dec 1;(3):69-78.

Author

Mikheev, S. E. / Safety zones in differential games. In: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. 2003 ; No. 3. pp. 69-78.

BibTeX

@article{c02cb538ef594f2a835b4d929be2c5bb,
title = "Safety zones in differential games",
abstract = "Two player-points P and E in the normed space B with convex vectogrammes V ⊂ U ⊂ B have antagonistic goals: E to reach a point of some set l named 'life line' before capture, P to prevent it. Capture is P(t) = E(t). Each goal function for the players has only two values 'winning' and 'loss'. The key for game analysis is safety zone A(t). The shrinkage of safety zones t2 > t1 ⇒ A(t2) ⊂ A(t1) is of principal importance. It is shown that P's strategy providing the shrinkage for every E's strategy also provides the capture in closure of A(0).",
keywords = "дифференциальные игры, области достижимости",
author = "Mikheev, {S. E.}",
year = "2003",
month = dec,
day = "1",
language = "русский",
pages = "69--78",
journal = "ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ",
issn = "1025-3106",
publisher = "Издательство Санкт-Петербургского университета",
number = "3",

}

RIS

TY - JOUR

T1 - Safety zones in differential games

AU - Mikheev, S. E.

PY - 2003/12/1

Y1 - 2003/12/1

N2 - Two player-points P and E in the normed space B with convex vectogrammes V ⊂ U ⊂ B have antagonistic goals: E to reach a point of some set l named 'life line' before capture, P to prevent it. Capture is P(t) = E(t). Each goal function for the players has only two values 'winning' and 'loss'. The key for game analysis is safety zone A(t). The shrinkage of safety zones t2 > t1 ⇒ A(t2) ⊂ A(t1) is of principal importance. It is shown that P's strategy providing the shrinkage for every E's strategy also provides the capture in closure of A(0).

AB - Two player-points P and E in the normed space B with convex vectogrammes V ⊂ U ⊂ B have antagonistic goals: E to reach a point of some set l named 'life line' before capture, P to prevent it. Capture is P(t) = E(t). Each goal function for the players has only two values 'winning' and 'loss'. The key for game analysis is safety zone A(t). The shrinkage of safety zones t2 > t1 ⇒ A(t2) ⊂ A(t1) is of principal importance. It is shown that P's strategy providing the shrinkage for every E's strategy also provides the capture in closure of A(0).

KW - дифференциальные игры, области достижимости

UR - http://www.scopus.com/inward/record.url?scp=2942644644&partnerID=8YFLogxK

M3 - статья

AN - SCOPUS:2942644644

SP - 69

EP - 78

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

SN - 1025-3106

IS - 3

ER -

ID: 50427499