Research output: Contribution to journal › Article › peer-review
Attachment of the ubiquitin (UB) peptide to proteins via the E1-E2-E3 enzymatic machinery regulates diverse biological pathways, yet identification of the substrates of E3 UB ligases remains a challenge. We overcame this challenge by constructing an “orthogonal UB transfer” (OUT) cascade with yeast E3 Rsp5 to enable the exclusive delivery of an engineered UB (xUB) to Rsp5 and its substrate proteins. The OUT screen uncovered new Rsp5 substrates in yeast, such as Pal1 and Pal2, which are partners of endocytic protein Ede1, and chaperones Hsp70-Ssb, Hsp82, and Hsp104 that counteract protein misfolding and control self-perpetuating amyloid aggregates (prions), resembling those involved in human amyloid diseases. We showed that prion formation and effect of Hsp104 on prion propagation are modulated by Rsp5. Overall, our work demonstrates the capacity of OUT to deconvolute the complex E3-substrate relationships in crucial biological processes such as endocytosis and protein assembly disorders through protein ubiquitination. We generated a substrate profile of yeast E3 ubiquitin ligase Rsp5 by following the exclusive transfer of an engineered xUB to Rsp5 substrates through an orthogonal ubiquitin transfer (OUT) cascade. Based on ubiquitination of disaggregase Hsp104 by Rsp5, we uncovered a role for Rsp5 in regulating prion formation and propagation.
Original language | English |
---|---|
Article number | 8 |
Pages (from-to) | 1283-1297.e8 |
Number of pages | 23 |
Journal | Cell Chemical Biology |
Volume | 28 |
Issue number | 9 |
Early online date | 4 Mar 2021 |
DOIs | |
State | Published - 16 Sep 2021 |
ID: 77118539