Research output: Contribution to journal › Article › peer-review
We consider quasilinear parabolic systems of equations with nondiagonal principal matrices. The oblique derivative of a solution is defined on the plane part of the lateral surface of a parabolic cylinder. We do not assume smoothness of the principal matrix and the boundary functions in the time variable and prove partial Hölder continuity of a weak solution near the plane part of the lateral surface of the cylinder. Hölder continuity of weak solutions to the correspondent linear problem is stated. A modification of the A(t)-caloric approximation method is applied to study the regularity of weak solutions.
Translated title of the contribution | Регулярность решений модельной задачи с косой прлоизводной для квазилинейных параболических систем с недиагональными главными матрицами |
---|---|
Original language | English |
Pages (from-to) | 1-18 |
Journal | Vestnik St.Petersburg University |
Volume | 52 |
Issue number | 1 |
DOIs | |
State | Published - 2019 |
ID: 38494738