Standard

Regular formal modules in one-dimensional local fields. / Vlassiev, S. M.; Vostokov, S. V.; Gorshkov, A. A.

In: Vestnik St. Petersburg University: Mathematics, Vol. 49, No. 4, 01.10.2016, p. 313-319.

Research output: Contribution to journalArticlepeer-review

Harvard

Vlassiev, SM, Vostokov, SV & Gorshkov, AA 2016, 'Regular formal modules in one-dimensional local fields', Vestnik St. Petersburg University: Mathematics, vol. 49, no. 4, pp. 313-319. https://doi.org/10.3103/S1063454116040142

APA

Vlassiev, S. M., Vostokov, S. V., & Gorshkov, A. A. (2016). Regular formal modules in one-dimensional local fields. Vestnik St. Petersburg University: Mathematics, 49(4), 313-319. https://doi.org/10.3103/S1063454116040142

Vancouver

Vlassiev SM, Vostokov SV, Gorshkov AA. Regular formal modules in one-dimensional local fields. Vestnik St. Petersburg University: Mathematics. 2016 Oct 1;49(4):313-319. https://doi.org/10.3103/S1063454116040142

Author

Vlassiev, S. M. ; Vostokov, S. V. ; Gorshkov, A. A. / Regular formal modules in one-dimensional local fields. In: Vestnik St. Petersburg University: Mathematics. 2016 ; Vol. 49, No. 4. pp. 313-319.

BibTeX

@article{b795e2a7a7ed46748a324f6502c7682e,
title = "Regular formal modules in one-dimensional local fields",
abstract = "This paper considers the problem of the description of unramified extensions of a local field which, together with the main field, do not contain nontrivial roots of isogeny of the corresponding formal group defined over a ring of integers of this field. This problem originated from investigation of extensions without higher ramification for multiplicative formal groups in the paper by Z.I. Borevich (1962).",
keywords = "completely regular local field, formal group, formal module, local field",
author = "Vlassiev, {S. M.} and Vostokov, {S. V.} and Gorshkov, {A. A.}",
year = "2016",
month = oct,
day = "1",
doi = "10.3103/S1063454116040142",
language = "English",
volume = "49",
pages = "313--319",
journal = "Vestnik St. Petersburg University: Mathematics",
issn = "1063-4541",
publisher = "Pleiades Publishing",
number = "4",

}

RIS

TY - JOUR

T1 - Regular formal modules in one-dimensional local fields

AU - Vlassiev, S. M.

AU - Vostokov, S. V.

AU - Gorshkov, A. A.

PY - 2016/10/1

Y1 - 2016/10/1

N2 - This paper considers the problem of the description of unramified extensions of a local field which, together with the main field, do not contain nontrivial roots of isogeny of the corresponding formal group defined over a ring of integers of this field. This problem originated from investigation of extensions without higher ramification for multiplicative formal groups in the paper by Z.I. Borevich (1962).

AB - This paper considers the problem of the description of unramified extensions of a local field which, together with the main field, do not contain nontrivial roots of isogeny of the corresponding formal group defined over a ring of integers of this field. This problem originated from investigation of extensions without higher ramification for multiplicative formal groups in the paper by Z.I. Borevich (1962).

KW - completely regular local field

KW - formal group

KW - formal module

KW - local field

UR - http://www.scopus.com/inward/record.url?scp=85006914577&partnerID=8YFLogxK

U2 - 10.3103/S1063454116040142

DO - 10.3103/S1063454116040142

M3 - Article

AN - SCOPUS:85006914577

VL - 49

SP - 313

EP - 319

JO - Vestnik St. Petersburg University: Mathematics

JF - Vestnik St. Petersburg University: Mathematics

SN - 1063-4541

IS - 4

ER -

ID: 38481343