The propagation of sound through temperature gradient regions of a glow discharge plasma is analysed. Using a JWKB solution known for a Schröedinger's equation describing the propagation of quantum particle through a potential barrier, an algorithm for evaluation of the reflection coefficient is proposed. The analytical results are compared with those obtained by numerically solving Euler's equations using a second order finite difference approach. The sound reflection coefficients calculated for temperature distribution profiles that are typical for atmospheric glow discharge plasma demonstrate that, at zero-incidence angle, a significant part, up to 25%, of the wave energy can be reflected. These results indicate that sound attenuation by the atmospheric glow discharge plasma by more than 10 dB, as demonstrated in a recent experiment, can be explained, accounting for three-dimensional effects, by the thermal gradient sound-plasma interaction mechanisms.

Original languageEnglish
Article number019
Pages (from-to)3653-3658
Number of pages6
JournalJournal of Physics D: Applied Physics
Volume39
Issue number16
DOIs
StatePublished - 21 Aug 2006

    Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Acoustics and Ultrasonics
  • Surfaces, Coatings and Films

ID: 9652772