Research output: Contribution to journal › Article › peer-review
The paper is devoted to studying a constrained nonlinear optimization problem of a special kind. The objective functional of the problem is a separable convex function whose minimum is sought for on a set of linear constraints in the form of equalities. It is proved that, for this type of optimization problems, the explicit form can be obtained of a projection operator based on a generalized projection matrix. The projection operator allows us to represent the initial problem as a fixed point problem. The explicit form of the fixed point problem makes it possible to run a process of simple iteration. We prove the linear convergence of the obtained iterative method and, under rather natural additional conditions, its quadratic convergence. It is shown that an important application of the developed method is the flow assignment in a network of an arbitrary topology with one pair of source and sink.
Original language | English |
---|---|
Pages (from-to) | 98-111 |
Number of pages | 14 |
Journal | Journal of Applied and Industrial Mathematics |
Volume | 12 |
Issue number | 1 |
DOIs | |
State | Published - 1 Jan 2018 |
ID: 36927276