Research output: Contribution to journal › Article › peer-review
Crevasses—cracks in glaciers and ice sheets—pose a danger to polar researchers and glaciologists. We compare the capabilities of two techniques—geomorphometric modeling and texture analysis—to recognize open and hidden crevasses using high-resolution digital elevation models (DEMs) generated from images collected by an unmanned aerial system (UAS). The first technique includes derivation of local morphometric variables; the second includes calculation of the Haralick texture features. The study area is represented by the first 30 km of a sledge route between the Progress and Vostok polar stations, East Antarctica. The UAS survey was performed by a Geoscan 201 Geodesy UAS. For the sledge route area, DEMs with resolutions of 0.25, 0.5, and 1 m were generated. Models of 12 morphometric variables and 11 texture features were derived from the DEMs. In terms of crevasse recognition, the most informative morphometric variable and texture feature was horizontal curvature and inverse difference moment, respectively. In most cases, derivation and mapping of these variables allow one to recognize crevasses wider than 3 m; narrower crevasses can be recognized for lengths from 500 m. For crevasse recognition, the geomorphometric modeling and the Haralick texture analysis can complement each other.
Original language | English |
---|---|
Article number | 5 |
Pages (from-to) | 2529-2552 |
Number of pages | 24 |
Journal | Transactions in GIS |
Volume | 25 |
Issue number | 5 |
Early online date | 6 Jul 2021 |
DOIs | |
State | Published - 6 Jul 2021 |
ID: 84352941