Standard

Random affine simplexes. / Götze, Friedrich; Gusakova, Anna; Zaporozhets, Dmitry.

In: Journal of Applied Probability, Vol. 56, No. 1, 01.03.2019, p. 39-51.

Research output: Contribution to journalArticlepeer-review

Harvard

Götze, F, Gusakova, A & Zaporozhets, D 2019, 'Random affine simplexes', Journal of Applied Probability, vol. 56, no. 1, pp. 39-51. https://doi.org/10.1017/jpr.2019.4

APA

Götze, F., Gusakova, A., & Zaporozhets, D. (2019). Random affine simplexes. Journal of Applied Probability, 56(1), 39-51. https://doi.org/10.1017/jpr.2019.4

Vancouver

Götze F, Gusakova A, Zaporozhets D. Random affine simplexes. Journal of Applied Probability. 2019 Mar 1;56(1):39-51. https://doi.org/10.1017/jpr.2019.4

Author

Götze, Friedrich ; Gusakova, Anna ; Zaporozhets, Dmitry. / Random affine simplexes. In: Journal of Applied Probability. 2019 ; Vol. 56, No. 1. pp. 39-51.

BibTeX

@article{2b2d341d6b574d798b39a5f88ba2c7a6,
title = "Random affine simplexes",
abstract = "For a fixed k (Formula Present) are the affine and the linear Grassmannians equipped with their respective Haar measures. The p=0 case reduces to an affine version of the integral formula of Furstenberg and Tzkoni (1971).",
keywords = "Blaschke-Petkantschin formula, convex hull, ellipsoid, expected volume, Furstenberg-Tzkoni formula, Gaussian matrix, intrinsic volume, random section, random simplex",
author = "Friedrich G{\"o}tze and Anna Gusakova and Dmitry Zaporozhets",
year = "2019",
month = mar,
day = "1",
doi = "10.1017/jpr.2019.4",
language = "English",
volume = "56",
pages = "39--51",
journal = "Journal of Applied Probability",
issn = "0021-9002",
publisher = "University of Sheffield",
number = "1",

}

RIS

TY - JOUR

T1 - Random affine simplexes

AU - Götze, Friedrich

AU - Gusakova, Anna

AU - Zaporozhets, Dmitry

PY - 2019/3/1

Y1 - 2019/3/1

N2 - For a fixed k (Formula Present) are the affine and the linear Grassmannians equipped with their respective Haar measures. The p=0 case reduces to an affine version of the integral formula of Furstenberg and Tzkoni (1971).

AB - For a fixed k (Formula Present) are the affine and the linear Grassmannians equipped with their respective Haar measures. The p=0 case reduces to an affine version of the integral formula of Furstenberg and Tzkoni (1971).

KW - Blaschke-Petkantschin formula

KW - convex hull

KW - ellipsoid

KW - expected volume

KW - Furstenberg-Tzkoni formula

KW - Gaussian matrix

KW - intrinsic volume

KW - random section

KW - random simplex

UR - http://www.scopus.com/inward/record.url?scp=85068905619&partnerID=8YFLogxK

U2 - 10.1017/jpr.2019.4

DO - 10.1017/jpr.2019.4

M3 - Article

AN - SCOPUS:85068905619

VL - 56

SP - 39

EP - 51

JO - Journal of Applied Probability

JF - Journal of Applied Probability

SN - 0021-9002

IS - 1

ER -

ID: 126284781