Standard

Raman Spectra of Crystalline Nanoparticles : Replacement for the Phonon Confinement Model. / Коняхин, Сергей; Утесов, Олег; Тертеров, Иван; Сиклицкая, Александра ; Яшенкин, Андрей Геннадьевич; Солнышков, Дмитрий .

In: Journal of Physical Chemistry C, Vol. 122, No. 33, 23.08.2018, p. 19219-19229.

Research output: Contribution to journalArticlepeer-review

Harvard

Коняхин, С, Утесов, О, Тертеров, И, Сиклицкая, А, Яшенкин, АГ & Солнышков, Д 2018, 'Raman Spectra of Crystalline Nanoparticles: Replacement for the Phonon Confinement Model', Journal of Physical Chemistry C, vol. 122, no. 33, pp. 19219-19229. https://doi.org/10.1021/acs.jpcc.8b05415

APA

Коняхин, С., Утесов, О., Тертеров, И., Сиклицкая, А., Яшенкин, А. Г., & Солнышков, Д. (2018). Raman Spectra of Crystalline Nanoparticles: Replacement for the Phonon Confinement Model. Journal of Physical Chemistry C, 122(33), 19219-19229. https://doi.org/10.1021/acs.jpcc.8b05415

Vancouver

Коняхин С, Утесов О, Тертеров И, Сиклицкая А, Яшенкин АГ, Солнышков Д. Raman Spectra of Crystalline Nanoparticles: Replacement for the Phonon Confinement Model. Journal of Physical Chemistry C. 2018 Aug 23;122(33):19219-19229. https://doi.org/10.1021/acs.jpcc.8b05415

Author

Коняхин, Сергей ; Утесов, Олег ; Тертеров, Иван ; Сиклицкая, Александра ; Яшенкин, Андрей Геннадьевич ; Солнышков, Дмитрий . / Raman Spectra of Crystalline Nanoparticles : Replacement for the Phonon Confinement Model. In: Journal of Physical Chemistry C. 2018 ; Vol. 122, No. 33. pp. 19219-19229.

BibTeX

@article{66d7720e50fd49b08e3b5fdf6c7043aa,
title = "Raman Spectra of Crystalline Nanoparticles: Replacement for the Phonon Confinement Model",
abstract = "In crystalline nanoparticles, the Raman peak is downshifted with respect to the bulk material and has asymmetric broadening. These effects are straightly related to the finite size of nanoparticles, giving the perspective to use Raman spectroscopy as the size probe. By combining the dynamical matrix method (DMM) and the bond polarization model (BPM), we develop a new (DMM-BPM) approach for the description of Raman spectra of nanoparticle powders. The numerical variant of this approach is suitable for the description of small particles, whereas its analytical version is simpler to implement and allows one to obtain the Raman spectra of arbitrary-sized particles. Focusing on nanodiamond powders, the DMM BPM theory is shown to fit the most recent experimental data much better than the commonly used phonon confinement model.",
keywords = "BOND POLARIZABILITY MODEL, TEMPERATURE-DEPENDENCE, LIGHT-SCATTERING, OPTICAL PHONON, DIAMOND, SPECTROSCOPY, NANODIAMOND, SILICON, SIZE, DISPERSION",
author = "Сергей Коняхин and Олег Утесов and Иван Тертеров and Александра Сиклицкая and Яшенкин, {Андрей Геннадьевич} and Дмитрий Солнышков",
year = "2018",
month = aug,
day = "23",
doi = "10.1021/acs.jpcc.8b05415",
language = "Английский",
volume = "122",
pages = "19219--19229",
journal = "Journal of Physical Chemistry C",
issn = "1932-7447",
publisher = "American Chemical Society",
number = "33",

}

RIS

TY - JOUR

T1 - Raman Spectra of Crystalline Nanoparticles

T2 - Replacement for the Phonon Confinement Model

AU - Коняхин, Сергей

AU - Утесов, Олег

AU - Тертеров, Иван

AU - Сиклицкая, Александра

AU - Яшенкин, Андрей Геннадьевич

AU - Солнышков, Дмитрий

PY - 2018/8/23

Y1 - 2018/8/23

N2 - In crystalline nanoparticles, the Raman peak is downshifted with respect to the bulk material and has asymmetric broadening. These effects are straightly related to the finite size of nanoparticles, giving the perspective to use Raman spectroscopy as the size probe. By combining the dynamical matrix method (DMM) and the bond polarization model (BPM), we develop a new (DMM-BPM) approach for the description of Raman spectra of nanoparticle powders. The numerical variant of this approach is suitable for the description of small particles, whereas its analytical version is simpler to implement and allows one to obtain the Raman spectra of arbitrary-sized particles. Focusing on nanodiamond powders, the DMM BPM theory is shown to fit the most recent experimental data much better than the commonly used phonon confinement model.

AB - In crystalline nanoparticles, the Raman peak is downshifted with respect to the bulk material and has asymmetric broadening. These effects are straightly related to the finite size of nanoparticles, giving the perspective to use Raman spectroscopy as the size probe. By combining the dynamical matrix method (DMM) and the bond polarization model (BPM), we develop a new (DMM-BPM) approach for the description of Raman spectra of nanoparticle powders. The numerical variant of this approach is suitable for the description of small particles, whereas its analytical version is simpler to implement and allows one to obtain the Raman spectra of arbitrary-sized particles. Focusing on nanodiamond powders, the DMM BPM theory is shown to fit the most recent experimental data much better than the commonly used phonon confinement model.

KW - BOND POLARIZABILITY MODEL

KW - TEMPERATURE-DEPENDENCE

KW - LIGHT-SCATTERING

KW - OPTICAL PHONON

KW - DIAMOND

KW - SPECTROSCOPY

KW - NANODIAMOND

KW - SILICON

KW - SIZE

KW - DISPERSION

U2 - 10.1021/acs.jpcc.8b05415

DO - 10.1021/acs.jpcc.8b05415

M3 - статья

VL - 122

SP - 19219

EP - 19229

JO - Journal of Physical Chemistry C

JF - Journal of Physical Chemistry C

SN - 1932-7447

IS - 33

ER -

ID: 36592632