Research output: Contribution to journal › Article › peer-review
Qubit gate operations in elliptically trapped polariton condensates. / Ricco, L.S.; Shelykh, I.A.; Kavokin, A.
In: Scientific Reports, Vol. 14, No. 1, 4211, 20.02.2024.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Qubit gate operations in elliptically trapped polariton condensates
AU - Ricco, L.S.
AU - Shelykh, I.A.
AU - Kavokin, A.
N1 - Export Date: 4 March 2024 Адрес для корреспонденции: Ricco, L.S.; Science Institute, Dunhagi-3, Iceland; эл. почта: lsricco@hi.is Адрес для корреспонденции: Kavokin, A.; Key Laboratory for Quantum Materials of Zhejiang Province, China; эл. почта: a.kavokin@westlake.edu.cn Сведения о финансировании: Icelandic Centre for Research, RANNIS, 163082-51, 239552-051, FSMG-2023-0011 Сведения о финансировании: Saint Petersburg State University, SPbU, 95442589 Текст о финансировании 1: L.S.R. acknowledges the support from the Icelandic Research Fund (Rannís), Grants No. 163082-51 and 239552-051. The work of I.A.S. was supported by Goszadaniye No FSMG-2023-0011. A.K. acknowledges the support of the Saint Petersburg State University through Research Grant No. 95442589. We acknowledge Aleksey Fedorov, Helgi Sigurðsson, and Boris Altshuler for fruitful discussions. We also acknowledge Roman Cherbunin for designing the read-out scheme of a two-qubit polariton gate. Текст о финансировании 2: L.S.R. acknowledges the support from the Icelandic Research Fund (Rannís), Grants No. 163082-51 and 239552-051. The work of I.A.S. was supported by Goszadaniye No FSMG-2023-0011. A.K. acknowledges the support of the Saint Petersburg State University through Research Grant No. 95442589. We acknowledge Aleksey Fedorov, Helgi Sigurðsson, and Boris Altshuler for fruitful discussions. We also acknowledge Roman Cherbunin for designing the read-out scheme of a two-qubit polariton gate. Пристатейные ссылки: Kavokin, A., Liew, T.C.H., Schneider, C., Lagoudakis, P.G., Klembt, S., Hoefling, S., Polariton condensates for classical and quantum computing (2022) Nat. Rev. Phys, 4, p. 435; Liew, T.C.H., The future of quantum in polariton systems: Opinion (2023) Opt. Mater. Express, 13, p. 1938. , 2023OMExp.13.1938L, 1:CAS:528:DC%2BB3sXhvVSksrfK; Sanvitto, D., Kéna-Cohen, S., The road towards polaritonic devices (2016) Nat. Mater, 15, p. 1061. , 2016NatMa.15.1061S, 1:CAS:528:DC%2BC28Xht1ygsb3N, 27429208; Keeling, J., Kéna-Cohen, S., Bose–Einstein condensation of exciton-polaritons in organic microcavities (2020) Annu. Rev. Phys. Chem, 71, p. 435. , 2020ARPC..71.435K, 1:CAS:528:DC%2BB3cXktl2ju7g%3D, 32126177; Schneider, C., Winkler, K., Fraser, M.D., Kamp, M., Yamamoto, Y., Ostrovskaya, E.A., Höfling, S., Exciton–polariton trapping and potential landscape engineering (2016) Rep. Prog. Phys, 80. , 2017Rh..80a6503S, 27841166; Töpfer, J.D., Chatzopoulos, I., Sigurdsson, H., Cookson, T., Rubo, Y.G., Lagoudakis, P.G., Engineering spatial coherence in lattices of polariton condensates (2021) Optica, 8, p. 106. , 2021Optic..8.106T; Kuriakose, T., Walker, P.M., Dowling, T., Kyriienko, O., Shelykh, I.A., St-Jean, P., Zambon, N.C., Krizhanovskii, D.N., Few-photon all-optical phase rotation in a quantum-well micropillar cavity (2022) Nat. Photon, 16, p. 566. , 2022NaPho.16.566K, 1:CAS:528:DC%2BB38XhsFKgtbrN; Boulier, T., Bamba, M., Amo, A., Adrados, C., Lemaitre, A., Galopin, E., Sagnes, I., Bramati, A., Polariton-generated intensity squeezing in semiconductor micropillars (2014) Nat. Commun, 5, p. 3260. , 2014NatCo..5.3260B, 1:CAS:528:DC%2BC2cXivVCjsLw%3D, 24518009; Delteil, A., Fink, T., Schade, A., Höfling, S., Schneider, C., İmamoğlu, A., Towards polariton blockade of confined exciton-polaritons (2019) Nat. Mater, 18, p. 219. , 1:CAS:528:DC%2BC1MXns1yit78%3D, 30783230; Muñoz-Matutano, G., Wood, A., Johnsson, M., Vidal, X., Baragiola, B.Q., Reinhard, A., Lemaître, A., Volz, T., Emergence of quantum correlations from interacting fibre-cavity polaritons (2019) Nat. Mater, 18, p. 213. , 1:CAS:528:DC%2BC1MXns1yit74%3D, 30783231; Cuevas, Á., Carreño, J.C.L., Silva, B., Giorgi, M.D., Suárez-Forero, D.G., Muñoz, C.S., Fieramosca, A., Sanvitto, D., First observation of the quantized exciton-polariton field and effect of interactions on a single polariton (2018) Sci. Adv, 4, p. eaao6814. , 2018SciA..4.6814C, 1:CAS:528:DC%2BC1cXisVCqurnN, 29725616; Kyriienko, O., Liew, T.C.H., Exciton-polariton quantum gates based on continuous variables (2016) Phys. Rev. B, 93. , 2016PhRvB.93c5301K, 1:CAS:528:DC%2BC28XhsVCksb%2FN; Puri, S., McMahon, P.L., Yamamoto, Y., Universal logic gates for quantum-dot electron-spin qubits using trapped quantum-well exciton polaritons (2017) Phys. Rev. B, 95. , 2017PhRvB.95l5410P; Xu, H., Krisnanda, T., Verstraelen, W., Liew, T.C.H., Ghosh, S., Superpolynomial quantum enhancement in polaritonic neuromorphic computing (2021) Phys. Rev. B, 103. , 2021PhRvB.103s5302X, 1:CAS:528:DC%2BB3MXht1ynsLfN; Nigro, D., D’Ambrosio, V., Sanvitto, D., Gerace, D., Integrated quantum polariton interferometry (2022) Commun. Phys, 5, p. 34; Demirchyan, S.S., Chestnov, I.Y., Alodjants, A.P., Glazov, M.M., Kavokin, A.V., Qubits based on polariton rabi oscillators (2014) Phys. Rev. Lett, 112. , 2014PhRvL.112s6403D, 1:CAS:528:DC%2BC2cXht1Omsr3E, 24877953; Solnyshkov, D., Bleu, O., Malpuech, G., All optical controlled-not gate based on an exciton-polariton circuit (2015) Superlatt. Microstruct, 83, p. 466. , 2015SuMi..83.466S, 1:CAS:528:DC%2BC2MXlvFCit78%3D; Ghosh, S., Liew, T.C.H., Quantum computing with exciton-polariton condensates (2020) Npj Quantum Inf, 6, p. 1. , 2020npjQI..6..1G; Xue, Y., Chestnov, I., Sedov, E., Kiktenko, E., Fedorov, A.K., Schumacher, S., Ma, X., Kavokin, A., Split-ring polariton condensates as macroscopic two-level quantum systems (2021) Phys. Rev. Res, 3. , 1:CAS:528:DC%2BB3MXovVajsL4%3D; Carusotto, I., Ciuti, C., Quantum fluids of light (2013) Rev. Mod. Phys, 85, p. 299. , 2013RvMP..85.299C; Kasprzak, J., Richard, M., Kundermann, S., Baas, A., Jeambrun, P., Keeling, J., Marchetti, F., Dang, L.S., Bose–Einstein condensation of exciton polaritons (2006) Nature, 443, p. 409. , 2006Natur.443.409K, 1:CAS:528:DC%2BD28XhtVSns7fJ, 17006506; Lukoshkin, V.A., Kalevich, V.K., Afanasiev, M.M., Kavokin, K.V., Hatzopoulos, Z., Savvidis, P.G., Sedov, E.S., Kavokin, A.V., Persistent circular currents of exciton-polaritons in cylindrical pillar microcavities (2018) Phys. Rev. B, 97. , 2018PhRvB.97s5149L, 1:CAS:528:DC%2BC1MXlsVWrtL4%3D; Sedov, E., Lukoshkin, V., Kalevich, V., Hatzopoulos, Z., Savvidis, P., Kavokin, A., Persistent currents in half-moon polariton condensates (2020) ACS Photon, 7, p. 1163. , 1:CAS:528:DC%2BB3cXntFCntLs%3D; Sedov, E.S., Lukoshkin, V.A., Kalevich, V.K., Savvidis, P.G., Kavokin, A.V., Circular polariton currents with integer and fractional orbital angular momenta (2021) Phys. Rev. Res, 3. , 1:CAS:528:DC%2BB3MXovVajsro%3D; Real, B., Carlon Zambon, N., St-Jean, P., Sagnes, I., Lemaître, A., Le Gratiet, L., Harouri, A., Amo, A., Chiral emission induced by optical zeeman effect in polariton micropillars (2021) Phys. Rev. Res, 3. , 1:CAS:528:DC%2BB38XhtFSgsL0%3D; Lukoshkin, V., Sedov, E., Kalevich, V., Hatzopoulos, Z., Savvidis, P.G., Kavokin, A., Steady state oscillations of circular currents in concentric polariton condensates (2023) Sci. Rep, 13, p. 4607. , 2023NatSR.13.4607L, 1:CAS:528:DC%2BB3sXmtFGktb4%3D, 36944664; Nardin, G., Lagoudakis, K.G., Pietka, B., Morier-Genoud, F.M.C., Léger, Y., Deveaud-Plédran, B., Selective photoexcitation of confined exciton-polariton vortices (2010) Phys. Rev. B, 82. , 2010PhRvB.82g3303N, 1:CAS:528:DC%2BC3cXhtFWlt77K; Gao, T., Egorov, O.A., Estrecho, E., Winkler, K., Kamp, M., Schneider, C., Höfling, S., Ostrovskaya, E.A., Controlled ordering of topological charges in an exciton-polariton chain (2018) Phys. Rev. Lett, 121. , 2018PhRvL.121v5302G, 1:CAS:528:DC%2BC1MXltFWjt7s%3D, 30547627; Kim, N.Y., Kusudo, K., Wu, C., Masumoto, N., Löffler, A., Höfling, S., Kumada, N., Yamamoto, Y., Dynamical d-wave condensation of exciton-polaritons in a two-dimensional square-lattice potential (2011) Nat. Phys, 7, p. 681. , 1:CAS:528:DC%2BC3MXhtFWls7vF; Askitopoulos, A., Liew, T.C.H., Ohadi, H., Hatzopoulos, Z., Savvidis, P.G., Lagoudakis, P.G., Robust platform for engineering pure-quantum-state transitions in polariton condensates (2015) Phys. Rev. B, 92. , 2015PhRvB.92c5305A, 1:CAS:528:DC%2BC28XpvVCrsA%3D%3D; Dall, R., Fraser, M.D., Desyatnikov, A.S., Li, G., Brodbeck, S., Kamp, M., Schneider, C., Ostrovskaya, E.A., Creation of orbital angular momentum states with chiral polaritonic lenses (2014) Phys. Rev. Lett, 113. , 2014PhRvL.113t0404D, 1:CAS:528:DC%2BC2cXitFOls7zO, 25432029; Sun, Y., Yoon, Y., Khan, S., Ge, L., Steger, M., Pfeiffer, L.N., West, K., Nelson, K.A., Stable switching among high-order modes in polariton condensates (2018) Phys. Rev. B, 97. , 2018PhRvB.97d5303S, 1:CAS:528:DC%2BC1MXlt1Cksb4%3D; Askitopoulos, A., Nalitov, A.V., Sedov, E.S., Pickup, L., Cherotchenko, E.D., Hatzopoulos, Z., Savvidis, P.G., Lagoudakis, P.G., All-optical quantum fluid spin beam splitter (2018) Phys. Rev. B, 97. , 2018PhRvB.97w5303A, 1:CAS:528:DC%2BC1MXlsVSrtLg%3D; Töpfer, J.D., Sigurdsson, H., Alyatkin, S., Lagoudakis, P.G., Lotka–Volterra population dynamics in coherent and tunable oscillators of trapped polariton condensates (2020) Phys. Rev. B, 102. , 2020PhRvB.102s5428T; Sitnik, K.A., Alyatkin, S., Töpfer, J.D., Gnusov, I., Cookson, T., Sigurdsson, H., Lagoudakis, P.G., Spontaneous formation of time-periodic vortex cluster in nonlinear fluids of light (2022) Phys. Rev. Lett, 128. , 2022PhRvL.128w7402S, 1:CAS:528:DC%2BB38XhvVWjsLbE, 35749201; (2023) Superfluid polaritonic qubit in an annular trap, , arXiv:2308.05555 [cond-mat.quant-gas]; Berloff, N.G., Silva, M., Kalinin, K., Askitopoulos, A., Töpfer, J.D., Cilibrizzi, P., Langbein, W., Lagoudakis, P.G., Realizing the classical XY hamiltonian in polariton simulators (2017) Nat. Mater, 16, p. 1120. , 2017NatMa.16.1120B, 1:CAS:528:DC%2BC2sXhsFOju7fM, 28967915; Harrison, S., Sigurdsson, H., Alyatkin, S., Töpfer, J., Lagoudakis, P., Solving the max-3-cut problem with coherent networks (2022) Phys. Rev. Appl, 17. , 2022PhRvP.17b4063H, 1:CAS:528:DC%2BB38Xmsleju78%3D; Kalinin, K.P., Amo, A., Bloch, J., Berloff, N.G., Polaritonic xy-ising machine (2020) Nanophotonics, 9, p. 4127; Alyatkin, S., Milian, C., Kartashov, Y.V., Sitnik, K.A., Topfer, J.D., Sigurdsson, H., Lagoudakis, P.G., All-optical artificial vortex matter in quantum fluids of light (2022)., , arXiv:2207.01850 [cond-mat.mes-hall]; de Oliveira, M.C., Munro, W.J., Quantum computation with mesoscopic superposition states (2000) Phys. Rev. A, 61. , 2000PhRvA.61d2309D; Nardin, G., Léger, Y., Pietka, B., Morier-Genoud, F., Deveaud-Pledran, B., Coherent oscillations between orbital angular momentum polariton states in an elliptic resonator (2011) J. Nanophoton, 5. , 2011JNano..5.3517N, 1:CAS:528:DC%2BC3MXht12nsbnJ; Bennenhei, C., Struve, M., Stephan, S., Kunte, N., Mitryakhin, V.N., Eilenberger, F., Ohmer, J., Esmann, M., Polarized room-temperature polariton lasing in elliptical microcavities filled with fluorescent proteins (2023) Opt. Mater. Express, 13, p. 2633. , 2023OMExp.13.2633B, 1:CAS:528:DC%2BB3sXitVGksLbJ; Nelsen, B., Liu, G., Steger, M., Snoke, D.W., Balili, R., West, K., Pfeiffer, L., Dissipationless flow and sharp threshold of a polariton condensate with long lifetime (2013) Phys. Rev. X, 3. , 1:CAS:528:DC%2BC2MXltVGgur4%3D; Ardizzone, V., Riminucci, F., Zanotti, S., Gianfrate, A., Efthymiou-Tsironi, M., Suàrez-Forero, D.G., Todisco, F., Sanvitto, D., Polariton Bose–Einstein condensate from a bound state in the continuum (2022) Nature, 605, p. 447. , 2022Natur.605.447A, 1:CAS:528:DC%2BB38XhtlajtL7J, 35585343; Caputo, D., Ballarini, D., Dagvadorj, G., SánchezáMuñoz, C., DeáGiorgi, M., Dominici, L., West, K., Sanvitto, D., Topological order and thermal equilibrium in polariton condensates (2018) Nat. Mater, 17, p. 145. , 2018NatMa.17.145C, 1:CAS:528:DC%2BC2sXhvFWgs77L, 29200196; Askitopoulos, A., Pickup, L., Alyatkin, S., Zasedatelev, A., Lagoudakis, K.G., Langbein, W., Lagoudakis, P.G., Giant increase of temporal coherence in optically trapped polariton condensate., , https://doi.org/10.48550/arXiv.1911.08981, arXiv:1911.08981 [cond-mat.quant-gas]; Sigurdsson, H., Gnusov, I., Alyatkin, S., Pickup, L., Gippius, N.A., Lagoudakis, P.G., Askitopoulos, A., Persistent self-induced larmor precession evidenced through periodic revivals of coherence (2022) Phys. Rev. Lett, 129. , 2022PhRvL.129o5301S, 1:CAS:528:DC%2BB38Xis1Ogt7fP, 36269967; Gnusov, I., Sigurdsson, H., Töpfer, J., Baryshev, S., Alyatkin, S., Lagoudakis, P., All-optical linear-polarization engineering in single and coupled exciton-polariton condensates (2021) Phys. Rev. Appl, 16. , 2021PhRvP.16c4014G, 1:CAS:528:DC%2BB3MXit1OksLbL; Alyatkin, S., Töpfer, J.D., Askitopoulos, A., Sigurdsson, H., Lagoudakis, P.G., Optical control of couplings in polariton condensate lattices (2020) Phys. Rev. Lett, 124. , 2020PhRvL.124t7402A, 1:CAS:528:DC%2BB3cXhsFCntrjF, 32501101; Krantz, P., Kjaergaard, M., Yan, F., Orlando, T.P., Gustavsson, S., Oliver, W.D., A quantum engineer’s guide to superconducting qubits (2019) Appl. Phys. Rev, 6. , 2019ARv..6b1318K, 1:CAS:528:DC%2BC1MXht1CnsrbP; DiVincenzo, D.P., The physical implementation of quantum computation (2000) Fortschr. Phys, 48, p. 771; Nielsen, M.A., Chuang, I.L., (2010) Quantum Computation and Quantum Information: 10th Anniversary, , Cambridge University Press; Peng, C., Hamerly, R., Soltani, M., Englund, D.R., Design of high-speed phase-only spatial light modulators with two-dimensional tunable microcavity arrays (2019) Opt. Express, 27, p. 30669. , 2019OExpr.2730669P, 1:CAS:528:DC%2BB3cXhtFOku77I, 31684311; Sedov, E.S., Lukoshkin, V.A., Kalevich, V.K., Hatzopoulos, Z., Savvidis, P.G., Kavokin, A.V., (2019) Superfluid currents in half-moon polariton condensates, , https://doi.org/10.48550/arXiv.1910.00344; Cherotchenko, E.D., Sigurdsson, H., Askitopoulos, A., Nalitov, A.V., Optically controlled polariton condensate molecules (2021) Phys. Rev. B, 103. , 2021PhRvB.103k5309C, 1:CAS:528:DC%2BB3MXovVWgtb4%3D; Ma, X., Berger, B., Aßmann, M., Driben, R., Meier, T., Schneider, C., Höfling, S., Schumacher, S., Realization of all-optical vortex switching in exciton-polariton condensates (2020) Nat. Commun, 11, p. 897. , 2020NatCo.11.897M, 1:CAS:528:DC%2BB3cXkvFWqu7s%3D, 32060289; Cerna, R., Sarchi, D., Paraïso, T.K., Nardin, G., Léger, Y., Richard, M., Pietka, B., Deveaud-Plédran, B., Coherent optical control of the wave function of zero-dimensional exciton polaritons (2009) Phys. Rev. B, 80. , 2009PhRvB.80l1309C, 1:CAS:528:DC%2BD1MXht1ansr7E; Gnusov, I., Harrison, S., Alyatkin, S., Sitnik, K., Töpfer, J., Sigurdsson, H., Lagoudakis, P., Quantum vortex formation in the “rotating bucket” experiment with polariton condensates (2023) Sci. Adv, 9, p. eadd1299. , 1:CAS:528:DC%2BB3sXjsFWmsLY%3D, 36696501; del Valle-Inclan Redondo, Y., Schneider, C., Klembt, S., Höfling, S., Tarucha, S., Fraser, M.D., Optically driven rotation of exciton-polariton condensates (2023) Nano Lett, 23, p. 4564. , 2023NanoL.23.4564D, 1:CAS:528:DC%2BB3sXovt7o%3D, 37129463; Aladinskaia, E., Cherbunin, R., Sedov, E., Liubomirov, A., Kavokin, K., Khramtsov, E., Petrov, M., Kavokin, A., Spatial quantization of exciton-polariton condensates in optically induced traps (2023) Phys. Rev. B, 107. , 2023PhRvB.107d5302A, 1:CAS:528:DC%2BB3sXjvVWgu7Y%3D; Sakurai, J.J., Napolitano, J., (2017) Modern Quantum Mechanics, , 2, Cambridge University Press; Estrecho, E., Gao, T., Bobrovska, N., Comber-Todd, D., Fraser, M.D., Steger, M., West, K., Ostrovskaya, E.A., Direct measurement of polariton-polariton interaction strength in the Thomas-fermi regime of exciton-polariton condensation (2019) Phys. Rev. B, 100. , 2019PhRvB.100c5306E, 1:CAS:528:DC%2BC1MXhvFanu73O; Li, K., The qubit fidelity under different error mechanisms based on error correction threshold (2022) Front. Phys; Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K., Quantum entanglement (2009) Rev. Mod. Phys, 81, p. 865. , 2009RvMP..81.865H, 2515619, 1:CAS:528:DC%2BD1MXnsFCgur0%3D; Kavokin, A.V., Baumberg, J.J., Malpuech, G., Laussy, F.P., (2017) Microcavities. On Semiconductor Science and Technology, , Oxford, Oxford University Press; Whittaker, D.M., Eastham, P.R., Coherence properties of the microcavity polariton condensate (2009) Europhys. Lett, 87, p. 27002. , 2009EL...8727002W, 1:CAS:528:DC%2BD1MXht1WksLnO; Steger, M., Fluegel, B., Alberi, K., Snoke, D.W., Pfeiffer, L.N., West, K., Mascarenhas, A., Ultra-low threshold polariton condensation (2017) Opt. Lett, 42, p. 1165. , 2017OptL..42.1165S, 1:CAS:528:DC%2BC1MXhsFensbc%3D, 28295074; Persistent, controllable circulation of a polariton ring condensate (2023, , arXiv:2302.07803 [cond-mat.quant-gas]; Clerk, A.A., Devoret, M.H., Girvin, S.M., Marquardt, F., Schoelkopf, R.J., Introduction to quantum noise, measurement, and amplification (2010) Rev. Mod. Phys, 82, p. 1155. , 2010RvMP..82.1155C, 2660766; Burkard, G., Koch, R.H., DiVincenzo, D.P., Multilevel quantum description of decoherence in superconducting qubits (2004) Phys. Rev. B, 69. , 2004PhRvB.69f4503B, 1:CAS:528:DC%2BD2cXitFSrtbw%3D; Wootters, W.K., Entanglement of formation of an arbitrary state of two qubits (1998) Phys. Rev. Lett, 80, p. 2245. , 1998PhRvL.80.2245W, 1:CAS:528:DyaK1cXhsV2ns78%3D; Johansson, J., Nation, P., Nori, F., Qutip 2: A python framework for the dynamics of open quantum systems (2013) Comput. Phys. Commun, 184, p. 1234. , 2013CoPhC.184.1234J, 1:CAS:528:DC%2BC3sXktlKm; Johansson, J., Nation, P., Nori, F., Qutip: An open-source python framework for the dynamics of open quantum systems (2012) Comput. Phys. Commun, 183, p. 1760. , 2012CoPhC.183.1760J, 1:CAS:528:DC%2BC38Xjs1Gku74%3D; Ma, X., Berger, B., Aßmann, M., Driben, R., Meier, T., Schneider, C., Höfling, S., Schumacher, S., Realization of all-optical vortex switching in exciton-polariton condensates (2020) Nat. Commun, 11, p. 1. , 1:CAS:528:DC%2BB3cXkvFWqu7s%3D; Yulin, A.V., Shelykh, I.A., Sedov, E.S., Kavokin, A.V., Vorticity of polariton condensates in rotating traps (2023)., 2306; Mair, A., Vaziri, A., Weihs, G., Zeilinger, A., Entanglement of the orbital angular momentum states of photons (2001) Nature, 412, pp. 313-316. , 2001Natur.412.313M, 1:STN:280:DC%2BD3MvhtF2isg%3D%3D, 11460157; Plantenberg, P., de Groot, J., Harmans, C.E.A., Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits (2007) Nature, 447, pp. 836-839. , 2007Natur.447.836P, 1:CAS:528:DC%2BD2sXms1Wjt7g%3D, 17568742
PY - 2024/2/20
Y1 - 2024/2/20
N2 - We consider bosonic condensates of exciton-polaritons optically confined in elliptical traps. A superposition of two non-degenerated p-type states of the condensate oriented along the two main axes of the trap is represented by a point on a Bloch sphere, being considered as an optically tunable qubit. We describe a set of universal single-qubit gates resulting in a controllable shift of the Bloch vector by means of an auxiliary laser beam. Moreover, we consider interaction mechanisms between two neighboring traps that enable designing two-qubit operations such as CPHASE and CNOT gates. Both the single- and two-qubit gates are analyzed in the presence of error sources in the context of polariton traps, such as pure dephasing and spontaneous relaxation mechanisms, leading to a fidelity reduction of the final qubit states and quantum concurrence, as well as the increase of Von Neumann entropy. We also discuss the applicability of our qubit proposal in the context of DiVincenzo’s criteria for the realization of local quantum computing processes. Altogether, the developed set of quantum operations would pave the way to the realization of a variety of quantum algorithms in a planar microcavity with a set of optically induced elliptical traps. © The Author(s) 2024.
AB - We consider bosonic condensates of exciton-polaritons optically confined in elliptical traps. A superposition of two non-degenerated p-type states of the condensate oriented along the two main axes of the trap is represented by a point on a Bloch sphere, being considered as an optically tunable qubit. We describe a set of universal single-qubit gates resulting in a controllable shift of the Bloch vector by means of an auxiliary laser beam. Moreover, we consider interaction mechanisms between two neighboring traps that enable designing two-qubit operations such as CPHASE and CNOT gates. Both the single- and two-qubit gates are analyzed in the presence of error sources in the context of polariton traps, such as pure dephasing and spontaneous relaxation mechanisms, leading to a fidelity reduction of the final qubit states and quantum concurrence, as well as the increase of Von Neumann entropy. We also discuss the applicability of our qubit proposal in the context of DiVincenzo’s criteria for the realization of local quantum computing processes. Altogether, the developed set of quantum operations would pave the way to the realization of a variety of quantum algorithms in a planar microcavity with a set of optically induced elliptical traps. © The Author(s) 2024.
KW - quantum dot
KW - algorithm
KW - article
KW - entropy
KW - human
KW - laser
KW - therapy
UR - https://www.mendeley.com/catalogue/1a9e5fa1-1a6b-34dd-95aa-4a8c577351c2/
U2 - 10.1038/s41598-024-54543-6
DO - 10.1038/s41598-024-54543-6
M3 - статья
C2 - 38378989
VL - 14
JO - Scientific Reports
JF - Scientific Reports
SN - 2045-2322
IS - 1
M1 - 4211
ER -
ID: 117318843