Research output: Contribution to journal › Article › peer-review
A measurement-induced continuous-variable logical gate is able to prepare Schrödinger cat states if the gate uses a non-Gaussian resource state, such as cubic phase state (I.V. Sokolov (2020) [21]). Our scheme provides an alternative to hybrid circuits which use photon subtraction and (or) Fock resource states and photon number detectors. We reveal the conditions under which the gate conditionally prepares quantum superposition of two undistorted “copies” of an arbitrary input state that occupies a finite area in phase space. A detailed analysis of the fidelity between the gate output state and high-quality Schrödinger cat state is performed. A clear interpretation of the output state quantum statistics in terms of Wigner function in dependence on the gate parameters and measurement outcome is presented for a representative set of input Fock states.
Original language | English |
---|---|
Article number | 127846 |
Number of pages | 7 |
Journal | Physics Letters A |
Volume | 424 |
DOIs | |
State | Published - 6 Feb 2022 |
ID: 88878156