Standard

Quantitative Szegő Minimum Problem for Some non-Szegő Measures. / Kononova, Anna.

Extended Abstracts Fall 2019: Spaces of Analytic Functions: Approximation, Interpolation, Sampling. Birkhäuser Verlag AG, 2021. p. 123-127 (Trends in Mathematics; Vol. 12).

Research output: Chapter in Book/Report/Conference proceedingChapterResearchpeer-review

Harvard

Kononova, A 2021, Quantitative Szegő Minimum Problem for Some non-Szegő Measures. in Extended Abstracts Fall 2019: Spaces of Analytic Functions: Approximation, Interpolation, Sampling. Trends in Mathematics, vol. 12, Birkhäuser Verlag AG, pp. 123-127. https://doi.org/10.1007/978-3-030-74417-5_18

APA

Kononova, A. (2021). Quantitative Szegő Minimum Problem for Some non-Szegő Measures. In Extended Abstracts Fall 2019: Spaces of Analytic Functions: Approximation, Interpolation, Sampling (pp. 123-127). (Trends in Mathematics; Vol. 12). Birkhäuser Verlag AG. https://doi.org/10.1007/978-3-030-74417-5_18

Vancouver

Kononova A. Quantitative Szegő Minimum Problem for Some non-Szegő Measures. In Extended Abstracts Fall 2019: Spaces of Analytic Functions: Approximation, Interpolation, Sampling. Birkhäuser Verlag AG. 2021. p. 123-127. (Trends in Mathematics). https://doi.org/10.1007/978-3-030-74417-5_18

Author

Kononova, Anna. / Quantitative Szegő Minimum Problem for Some non-Szegő Measures. Extended Abstracts Fall 2019: Spaces of Analytic Functions: Approximation, Interpolation, Sampling. Birkhäuser Verlag AG, 2021. pp. 123-127 (Trends in Mathematics).

BibTeX

@inbook{24d3e215b5aa47fb9bd1b9c78b08ea2f,
title = "Quantitative Szeg{\H o} Minimum Problem for Some non-Szeg{\H o} Measures",
abstract = "Let μ be a Borel measure on the unit circle, and let en denote the L2 norm of the monic orthogonal polynomial of degree n with respect to μ. By the classical Szeg{\H o} theorem en→ 0 if and only if the logarithmic integral of μ diverges. In this talk, we discuss the rate of decay of the quantities en for certain classes of measures μ with divergent logarithmic integral. This talk is based on the joint work with A. Borichev and M. Sodin [1, 2].",
author = "Anna Kononova",
note = "Publisher Copyright: {\textcopyright} 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.",
year = "2021",
doi = "10.1007/978-3-030-74417-5_18",
language = "English",
isbn = "978-3-030-74416-8",
series = "Trends in Mathematics",
publisher = "Birkh{\"a}user Verlag AG",
pages = "123--127",
booktitle = "Extended Abstracts Fall 2019",
address = "Switzerland",

}

RIS

TY - CHAP

T1 - Quantitative Szegő Minimum Problem for Some non-Szegő Measures

AU - Kononova, Anna

N1 - Publisher Copyright: © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.

PY - 2021

Y1 - 2021

N2 - Let μ be a Borel measure on the unit circle, and let en denote the L2 norm of the monic orthogonal polynomial of degree n with respect to μ. By the classical Szegő theorem en→ 0 if and only if the logarithmic integral of μ diverges. In this talk, we discuss the rate of decay of the quantities en for certain classes of measures μ with divergent logarithmic integral. This talk is based on the joint work with A. Borichev and M. Sodin [1, 2].

AB - Let μ be a Borel measure on the unit circle, and let en denote the L2 norm of the monic orthogonal polynomial of degree n with respect to μ. By the classical Szegő theorem en→ 0 if and only if the logarithmic integral of μ diverges. In this talk, we discuss the rate of decay of the quantities en for certain classes of measures μ with divergent logarithmic integral. This talk is based on the joint work with A. Borichev and M. Sodin [1, 2].

UR - http://www.scopus.com/inward/record.url?scp=85119703452&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/9d64192a-2dbf-3725-8486-06e258f7fc3a/

U2 - 10.1007/978-3-030-74417-5_18

DO - 10.1007/978-3-030-74417-5_18

M3 - Chapter

AN - SCOPUS:85119703452

SN - 978-3-030-74416-8

T3 - Trends in Mathematics

SP - 123

EP - 127

BT - Extended Abstracts Fall 2019

PB - Birkhäuser Verlag AG

ER -

ID: 89171768