Standard

Quantification of elements in spent nuclear fuel using intrinsic radioactivity for sample excitation and chemometric data processing. / Panchuk, V.; Petrov, Y.; Semenov, V.; Kirsanov, D.

In: Analytica Chimica Acta, Vol. 1239, 340694, 25.01.2023.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

BibTeX

@article{5d7d05caf02240fe83581db69ff93502,
title = "Quantification of elements in spent nuclear fuel using intrinsic radioactivity for sample excitation and chemometric data processing",
abstract = "Quantitative analysis of spent nuclear fuel (SNF) is a very challenging task. High radioactivity, complex chemical composition and personnel safety requirements severely limit the number of analytical tools suitable for this problem. There is an urgent need for the methods that would provide for remote on-line quantification of elements in spent nuclear fuel and its reprocessing technological solutions. Here we propose a novel approach based on the registration of X-ray fluorescence radiation from SNF samples induced by fission products radioactivity. In this case the X-ray excitation conditions will obviously vary from sample to sample; moreover the resulting spectra will be a complex superposition of numerous signals from soft gamma emitters and X-ray fluorescence of various nature. These complex spectra can be effectively treated with chemometric data processing for quantification of particular elements. We have demonstrated the validity of this approach for direct analysis of U, Zr and Mo in SNF raffinate. {\textcopyright} 2022 Elsevier B.V.",
keywords = "Chemometrics, Elemental analysis, Spent nuclear fuel, X-ray fluorescence, Data handling, Fission products, Fluorescence, Gamma rays, Nuclear fuel cladding, Nuclear fuel reprocessing, Radioactivity, Analytical tool, Chemical compositions, Chemometric data processing, Chemometrices, Complex chemicals, On-line quantification, Personnel safety, Safety requirements, Spent nuclear fuels, X ray fluorescence, Chemical analysis, americium, barium, curium, iodine, lanthanide, molybdenum, neptunium, nuclear fuel, plutonium, silicon, spent nuclear fuel, strontium, strontium 90, technetium 99m, unclassified drug, uranium, yttrium, yttrium 90, zirconium, Article, chemometrics, concentration (parameter), data processing, elemental analysis, excitation, gamma radiation, nuclear energy, quantitative analysis, radioactivity, sample, validity, radioactive waste, X ray, Gamma Rays, Radioactive Waste, X-Rays",
author = "V. Panchuk and Y. Petrov and V. Semenov and D. Kirsanov",
note = "Цитирования:2 Export Date: 28 November 2023 CODEN: ACACA Адрес для корреспонденции: Kirsanov, D.; Institute of Chemistry, Russian Federation; эл. почта: d.kirsanov@gmail.com Химические вещества/CAS: americium, 7440-35-9; barium, 7440-39-3; curium, 7440-51-9; iodine, 7553-56-2; molybdenum, 7439-98-7; neptunium, 7439-99-8; plutonium, 7440-07-5; silicon, 7440-21-3; strontium, 7440-24-6; strontium 90, 10098-97-2; technetium 99m, 14133-76-7; uranium, 7440-61-1; yttrium, 7440-65-5; yttrium 90, 10098-91-6; zirconium, 14940-68-2, 7440-67-7; Radioactive Waste Пристатейные ссылки: Krachler, M., Alvarez-Sarandes, R., Sou{\v c}ek, P., Carbol, P., High resolution ICP-OES analysis of neptunium-237 in samples from pyrochemical treatment of spent nuclear fuel (2014) Microchem. J., 117, pp. 225-232; Krachler, M., Alvarez-Sarandes, R., Van Winckel, S., Cross-validation of analytical procedures for the reliable determination of Nd concentrations in nuclear fuel using ICP-OES and sector field ICP-MS (2013) J. Anal. Atomic Spectrom., 28, pp. 114-120; Garcia Alonso, J.I., Sena, F., Arbore, P., Betti, M., Koch, L., Determination of fission products and actinides in spent nuclear fuels by isotope dilution ion chromatography inductively coupled plasma mass spectrometry (1995) J. Anal. Atomic Spectrom., 10, pp. 381-393; Savina, M.R., Isselhardt, B., Trappitsch, R., Simultaneous isotopic analysis of U, Pu, and Am in spent nuclear fuel by resonance ionization mass spectrometry (2021) Anal. Chem., 93, pp. 9505-9512; Bryan, S.A., Levitskaia, T.G., Johnsen, A.M., Orton, C.R., Peterson, J.M., Spectroscopic monitoring of spent nuclear fuel reprocessing streams: an evaluation of spent fuel solutions via Raman, visible, and near-infrared spectroscopy (2011) Radiochim. Acta, 99, pp. 563-571; Kirsanov, D., Babain, V., Agafonova-Moroz, M., Lumpov, A., Legin, A., Combination of optical spectroscopy and chemometric techniques - a possible way for on-line monitoring of spent nuclear fuel (SNF) reprocessing (2012) Radiochim. Acta, 100, pp. 185-188; Kirsanov, D., Rudnitskaya, A., Legin, A., Babain, V., UV–Vis spectroscopy with chemometric data treatment: an option for on-line control in nuclear industry (2017) J. Radioanal. Nucl. Chem., 312, pp. 461-470; Tse, P., Bryan, S.A., Bessen, N.P., Lines, A.M., Shafer, J.C., Review of on-line and near real-time spectroscopic monitoring of processes relevant to nuclear material management (2020) Anal. Chim. Acta, 1107, pp. 1-13; Nelson, G.L., Lackey, H.E., Bello, J.M., Felmy, H.M., Bryan, H.B., Lamadie, F., Bryan, S.A., Lines, A.M., Enabling microscale processing: combined Raman and absorbance spectroscopy for microfluidic on-line monitoring (2021) Anal. Chem., 93, pp. 1643-1651; Savosina, J., Agafonova-Moroz, M., Yaroshenko, I., Ashina, J., Babain, V., Lumpov, A., Legin, A., Kirsanov, D., Plutonium (IV) quantification in technologically relevant media using potentiometric sensor array (2020) Sensors, 20. , paper #1604; Agafonova-Moroz, M., Savosina, J., Voroshilov, Y., Lukin, S., Lumpov, A., Babain, V., Oleneva, E., Kirsanov, D., Quantification of thorium and uranium in real process streams of Mayak radiochemical plant using potentiometric multisensor array (2020) J. Radioanal. Nucl. Chem., 323, pp. 605-612; Guery, M., Some applications of gamma absorptiometry and spectrometry for the control of nuclear materials (1991) J. Radioanal. Nucl. Chem., 178, pp. 266-273; John, J., {\v S}ebesta, F., Sp{\v e}v{\'a}{\v c}kov{\'a}, V., Determination of uranium in solutions and sorbents by soft gamma-ray absorptiometry (1991) J. Radioanal. Nucl. Chem., 152, pp. 67-80; Ottmar, H., (1983) ESARDA Bull., 4, p. 19; Ottmar, H., Eberle, H., The Hybrid K-Edge/K-XRF Densitometer: Principles-Design-Performance. KFK-4590 (1991), Germany; Ottmar, H., Eberle, H., Daures, P., Janssens, W., Ougier, M., Peerani, P., BlohmHieber, U., MacLean, F., In: Proceedings of the 19th Annual ESARDA Symposium (1997), pp. 211-219. , Montpellier France May 13–15; McIntosh, K.G., Reilly, S.D., Havrilla, G.J., Determination of plutonium in spent nuclear fuel using high resolution X-ray (2015) Spectrochim. Acta Part B At. Spectrosc., 110, pp. 91-95; Bushuev, A.V., Galkov, V.I., Zbonarev, A.V., Zolotov, A.F., Kutuzov, A.A., Mel'nichenko, N.A., Ozerkov, V.N., Chachin, V.V., A nondestructive method of determining the Pu/U ratio in fast reactor fuel elements, based on x-ray spectrometry (1982) Atom. Energy, 53, pp. 11-14; Park, S.-H., Jo, K.H., Lee, S.K., Seo, H., Lee, C., Won, B.-H., Ahn, S.-K., Ku, J.-H., Application of Compton-suppressed self-induced XRF to spent nuclear fuel measurement (2017) J. Kor. Phys. Soc., 71, pp. 543-547; Mark, H., Workman, J., Chemometrics in Spectroscopy (2018), Second ed. Elsevier Inc; Kirsanov, D., Panchuk, V., Goydenko, A., Khaydukova, M., Semenov, V., Legin, A., Improving precision of X-ray fluorescence analysis of lanthanide mixtures using partial least squares regression (2015) Spectrochim. Acta Part B At. Spectrosc., 113, pp. 126-131; Kirsanov, D., Panchuk, V., Agafonova-Moroz, M., Khaydukova, M., Lumpov, A., Semenov, V., Legin, A., A sample-effective calibration design for multiple components (2014) Analyst, 139, pp. 4303-4309; Wold, S., Sj{\"o}str{\"o}m, M., Eriksson, L., PLS-regression: a basic tool of chemometrics (2001) Chemometr. Intell. Lab. Syst., 58, pp. 109-130; Stone, M., Cross-validatory choice and assessment of statistical predictions (1974) J.R. Statist. Soc. B, 36, pp. 111-147; Smit, S., van Breemen, M.J., Hoefsloot, H.C.J., Smilde, A.K., Aerts, J.M.F.G., de Koster, C.G., Assessing the statistical validity of proteomics based biomarkers (2007) Anal. Chim. Acta, 592, pp. 210-217; R: A Language and Environment for Statistical Computing (2022), https://www.R-project.org/, R Foundation for Statistical Computing Vienna, Austria URL; Kucheryavskiy, S., Mdatools – R package for chemometrics (2020) Chemometr. Intell. Lab. Syst., 198",
year = "2023",
month = jan,
day = "25",
doi = "10.1016/j.aca.2022.340694",
language = "Английский",
volume = "1239",
journal = "Analytica Chimica Acta",
issn = "0003-2670",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Quantification of elements in spent nuclear fuel using intrinsic radioactivity for sample excitation and chemometric data processing

AU - Panchuk, V.

AU - Petrov, Y.

AU - Semenov, V.

AU - Kirsanov, D.

N1 - Цитирования:2 Export Date: 28 November 2023 CODEN: ACACA Адрес для корреспонденции: Kirsanov, D.; Institute of Chemistry, Russian Federation; эл. почта: d.kirsanov@gmail.com Химические вещества/CAS: americium, 7440-35-9; barium, 7440-39-3; curium, 7440-51-9; iodine, 7553-56-2; molybdenum, 7439-98-7; neptunium, 7439-99-8; plutonium, 7440-07-5; silicon, 7440-21-3; strontium, 7440-24-6; strontium 90, 10098-97-2; technetium 99m, 14133-76-7; uranium, 7440-61-1; yttrium, 7440-65-5; yttrium 90, 10098-91-6; zirconium, 14940-68-2, 7440-67-7; Radioactive Waste Пристатейные ссылки: Krachler, M., Alvarez-Sarandes, R., Souček, P., Carbol, P., High resolution ICP-OES analysis of neptunium-237 in samples from pyrochemical treatment of spent nuclear fuel (2014) Microchem. J., 117, pp. 225-232; Krachler, M., Alvarez-Sarandes, R., Van Winckel, S., Cross-validation of analytical procedures for the reliable determination of Nd concentrations in nuclear fuel using ICP-OES and sector field ICP-MS (2013) J. Anal. Atomic Spectrom., 28, pp. 114-120; Garcia Alonso, J.I., Sena, F., Arbore, P., Betti, M., Koch, L., Determination of fission products and actinides in spent nuclear fuels by isotope dilution ion chromatography inductively coupled plasma mass spectrometry (1995) J. Anal. Atomic Spectrom., 10, pp. 381-393; Savina, M.R., Isselhardt, B., Trappitsch, R., Simultaneous isotopic analysis of U, Pu, and Am in spent nuclear fuel by resonance ionization mass spectrometry (2021) Anal. Chem., 93, pp. 9505-9512; Bryan, S.A., Levitskaia, T.G., Johnsen, A.M., Orton, C.R., Peterson, J.M., Spectroscopic monitoring of spent nuclear fuel reprocessing streams: an evaluation of spent fuel solutions via Raman, visible, and near-infrared spectroscopy (2011) Radiochim. Acta, 99, pp. 563-571; Kirsanov, D., Babain, V., Agafonova-Moroz, M., Lumpov, A., Legin, A., Combination of optical spectroscopy and chemometric techniques - a possible way for on-line monitoring of spent nuclear fuel (SNF) reprocessing (2012) Radiochim. Acta, 100, pp. 185-188; Kirsanov, D., Rudnitskaya, A., Legin, A., Babain, V., UV–Vis spectroscopy with chemometric data treatment: an option for on-line control in nuclear industry (2017) J. Radioanal. Nucl. Chem., 312, pp. 461-470; Tse, P., Bryan, S.A., Bessen, N.P., Lines, A.M., Shafer, J.C., Review of on-line and near real-time spectroscopic monitoring of processes relevant to nuclear material management (2020) Anal. Chim. Acta, 1107, pp. 1-13; Nelson, G.L., Lackey, H.E., Bello, J.M., Felmy, H.M., Bryan, H.B., Lamadie, F., Bryan, S.A., Lines, A.M., Enabling microscale processing: combined Raman and absorbance spectroscopy for microfluidic on-line monitoring (2021) Anal. Chem., 93, pp. 1643-1651; Savosina, J., Agafonova-Moroz, M., Yaroshenko, I., Ashina, J., Babain, V., Lumpov, A., Legin, A., Kirsanov, D., Plutonium (IV) quantification in technologically relevant media using potentiometric sensor array (2020) Sensors, 20. , paper #1604; Agafonova-Moroz, M., Savosina, J., Voroshilov, Y., Lukin, S., Lumpov, A., Babain, V., Oleneva, E., Kirsanov, D., Quantification of thorium and uranium in real process streams of Mayak radiochemical plant using potentiometric multisensor array (2020) J. Radioanal. Nucl. Chem., 323, pp. 605-612; Guery, M., Some applications of gamma absorptiometry and spectrometry for the control of nuclear materials (1991) J. Radioanal. Nucl. Chem., 178, pp. 266-273; John, J., Šebesta, F., Spěváčková, V., Determination of uranium in solutions and sorbents by soft gamma-ray absorptiometry (1991) J. Radioanal. Nucl. Chem., 152, pp. 67-80; Ottmar, H., (1983) ESARDA Bull., 4, p. 19; Ottmar, H., Eberle, H., The Hybrid K-Edge/K-XRF Densitometer: Principles-Design-Performance. KFK-4590 (1991), Germany; Ottmar, H., Eberle, H., Daures, P., Janssens, W., Ougier, M., Peerani, P., BlohmHieber, U., MacLean, F., In: Proceedings of the 19th Annual ESARDA Symposium (1997), pp. 211-219. , Montpellier France May 13–15; McIntosh, K.G., Reilly, S.D., Havrilla, G.J., Determination of plutonium in spent nuclear fuel using high resolution X-ray (2015) Spectrochim. Acta Part B At. Spectrosc., 110, pp. 91-95; Bushuev, A.V., Galkov, V.I., Zbonarev, A.V., Zolotov, A.F., Kutuzov, A.A., Mel'nichenko, N.A., Ozerkov, V.N., Chachin, V.V., A nondestructive method of determining the Pu/U ratio in fast reactor fuel elements, based on x-ray spectrometry (1982) Atom. Energy, 53, pp. 11-14; Park, S.-H., Jo, K.H., Lee, S.K., Seo, H., Lee, C., Won, B.-H., Ahn, S.-K., Ku, J.-H., Application of Compton-suppressed self-induced XRF to spent nuclear fuel measurement (2017) J. Kor. Phys. Soc., 71, pp. 543-547; Mark, H., Workman, J., Chemometrics in Spectroscopy (2018), Second ed. Elsevier Inc; Kirsanov, D., Panchuk, V., Goydenko, A., Khaydukova, M., Semenov, V., Legin, A., Improving precision of X-ray fluorescence analysis of lanthanide mixtures using partial least squares regression (2015) Spectrochim. Acta Part B At. Spectrosc., 113, pp. 126-131; Kirsanov, D., Panchuk, V., Agafonova-Moroz, M., Khaydukova, M., Lumpov, A., Semenov, V., Legin, A., A sample-effective calibration design for multiple components (2014) Analyst, 139, pp. 4303-4309; Wold, S., Sjöström, M., Eriksson, L., PLS-regression: a basic tool of chemometrics (2001) Chemometr. Intell. Lab. Syst., 58, pp. 109-130; Stone, M., Cross-validatory choice and assessment of statistical predictions (1974) J.R. Statist. Soc. B, 36, pp. 111-147; Smit, S., van Breemen, M.J., Hoefsloot, H.C.J., Smilde, A.K., Aerts, J.M.F.G., de Koster, C.G., Assessing the statistical validity of proteomics based biomarkers (2007) Anal. Chim. Acta, 592, pp. 210-217; R: A Language and Environment for Statistical Computing (2022), https://www.R-project.org/, R Foundation for Statistical Computing Vienna, Austria URL; Kucheryavskiy, S., Mdatools – R package for chemometrics (2020) Chemometr. Intell. Lab. Syst., 198

PY - 2023/1/25

Y1 - 2023/1/25

N2 - Quantitative analysis of spent nuclear fuel (SNF) is a very challenging task. High radioactivity, complex chemical composition and personnel safety requirements severely limit the number of analytical tools suitable for this problem. There is an urgent need for the methods that would provide for remote on-line quantification of elements in spent nuclear fuel and its reprocessing technological solutions. Here we propose a novel approach based on the registration of X-ray fluorescence radiation from SNF samples induced by fission products radioactivity. In this case the X-ray excitation conditions will obviously vary from sample to sample; moreover the resulting spectra will be a complex superposition of numerous signals from soft gamma emitters and X-ray fluorescence of various nature. These complex spectra can be effectively treated with chemometric data processing for quantification of particular elements. We have demonstrated the validity of this approach for direct analysis of U, Zr and Mo in SNF raffinate. © 2022 Elsevier B.V.

AB - Quantitative analysis of spent nuclear fuel (SNF) is a very challenging task. High radioactivity, complex chemical composition and personnel safety requirements severely limit the number of analytical tools suitable for this problem. There is an urgent need for the methods that would provide for remote on-line quantification of elements in spent nuclear fuel and its reprocessing technological solutions. Here we propose a novel approach based on the registration of X-ray fluorescence radiation from SNF samples induced by fission products radioactivity. In this case the X-ray excitation conditions will obviously vary from sample to sample; moreover the resulting spectra will be a complex superposition of numerous signals from soft gamma emitters and X-ray fluorescence of various nature. These complex spectra can be effectively treated with chemometric data processing for quantification of particular elements. We have demonstrated the validity of this approach for direct analysis of U, Zr and Mo in SNF raffinate. © 2022 Elsevier B.V.

KW - Chemometrics

KW - Elemental analysis

KW - Spent nuclear fuel

KW - X-ray fluorescence

KW - Data handling

KW - Fission products

KW - Fluorescence

KW - Gamma rays

KW - Nuclear fuel cladding

KW - Nuclear fuel reprocessing

KW - Radioactivity

KW - Analytical tool

KW - Chemical compositions

KW - Chemometric data processing

KW - Chemometrices

KW - Complex chemicals

KW - On-line quantification

KW - Personnel safety

KW - Safety requirements

KW - Spent nuclear fuels

KW - X ray fluorescence

KW - Chemical analysis

KW - americium

KW - barium

KW - curium

KW - iodine

KW - lanthanide

KW - molybdenum

KW - neptunium

KW - nuclear fuel

KW - plutonium

KW - silicon

KW - spent nuclear fuel

KW - strontium

KW - strontium 90

KW - technetium 99m

KW - unclassified drug

KW - uranium

KW - yttrium

KW - yttrium 90

KW - zirconium

KW - Article

KW - chemometrics

KW - concentration (parameter)

KW - data processing

KW - elemental analysis

KW - excitation

KW - gamma radiation

KW - nuclear energy

KW - quantitative analysis

KW - radioactivity

KW - sample

KW - validity

KW - radioactive waste

KW - X ray

KW - Gamma Rays

KW - Radioactive Waste

KW - X-Rays

UR - https://www.mendeley.com/catalogue/0431fa9b-b4b9-35af-8215-1a1517bd669b/

U2 - 10.1016/j.aca.2022.340694

DO - 10.1016/j.aca.2022.340694

M3 - статья

VL - 1239

JO - Analytica Chimica Acta

JF - Analytica Chimica Acta

SN - 0003-2670

M1 - 340694

ER -

ID: 114408051