Research output: Contribution to journal › Article › peer-review
Quantification of elements in spent nuclear fuel using intrinsic radioactivity for sample excitation and chemometric data processing. / Panchuk, V.; Petrov, Y.; Semenov, V.; Kirsanov, D.
In: Analytica Chimica Acta, Vol. 1239, 340694, 25.01.2023.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Quantification of elements in spent nuclear fuel using intrinsic radioactivity for sample excitation and chemometric data processing
AU - Panchuk, V.
AU - Petrov, Y.
AU - Semenov, V.
AU - Kirsanov, D.
N1 - Цитирования:2 Export Date: 28 November 2023 CODEN: ACACA Адрес для корреспонденции: Kirsanov, D.; Institute of Chemistry, Russian Federation; эл. почта: d.kirsanov@gmail.com Химические вещества/CAS: americium, 7440-35-9; barium, 7440-39-3; curium, 7440-51-9; iodine, 7553-56-2; molybdenum, 7439-98-7; neptunium, 7439-99-8; plutonium, 7440-07-5; silicon, 7440-21-3; strontium, 7440-24-6; strontium 90, 10098-97-2; technetium 99m, 14133-76-7; uranium, 7440-61-1; yttrium, 7440-65-5; yttrium 90, 10098-91-6; zirconium, 14940-68-2, 7440-67-7; Radioactive Waste Пристатейные ссылки: Krachler, M., Alvarez-Sarandes, R., Souček, P., Carbol, P., High resolution ICP-OES analysis of neptunium-237 in samples from pyrochemical treatment of spent nuclear fuel (2014) Microchem. J., 117, pp. 225-232; Krachler, M., Alvarez-Sarandes, R., Van Winckel, S., Cross-validation of analytical procedures for the reliable determination of Nd concentrations in nuclear fuel using ICP-OES and sector field ICP-MS (2013) J. Anal. Atomic Spectrom., 28, pp. 114-120; Garcia Alonso, J.I., Sena, F., Arbore, P., Betti, M., Koch, L., Determination of fission products and actinides in spent nuclear fuels by isotope dilution ion chromatography inductively coupled plasma mass spectrometry (1995) J. Anal. Atomic Spectrom., 10, pp. 381-393; Savina, M.R., Isselhardt, B., Trappitsch, R., Simultaneous isotopic analysis of U, Pu, and Am in spent nuclear fuel by resonance ionization mass spectrometry (2021) Anal. Chem., 93, pp. 9505-9512; Bryan, S.A., Levitskaia, T.G., Johnsen, A.M., Orton, C.R., Peterson, J.M., Spectroscopic monitoring of spent nuclear fuel reprocessing streams: an evaluation of spent fuel solutions via Raman, visible, and near-infrared spectroscopy (2011) Radiochim. Acta, 99, pp. 563-571; Kirsanov, D., Babain, V., Agafonova-Moroz, M., Lumpov, A., Legin, A., Combination of optical spectroscopy and chemometric techniques - a possible way for on-line monitoring of spent nuclear fuel (SNF) reprocessing (2012) Radiochim. Acta, 100, pp. 185-188; Kirsanov, D., Rudnitskaya, A., Legin, A., Babain, V., UV–Vis spectroscopy with chemometric data treatment: an option for on-line control in nuclear industry (2017) J. Radioanal. Nucl. Chem., 312, pp. 461-470; Tse, P., Bryan, S.A., Bessen, N.P., Lines, A.M., Shafer, J.C., Review of on-line and near real-time spectroscopic monitoring of processes relevant to nuclear material management (2020) Anal. Chim. Acta, 1107, pp. 1-13; Nelson, G.L., Lackey, H.E., Bello, J.M., Felmy, H.M., Bryan, H.B., Lamadie, F., Bryan, S.A., Lines, A.M., Enabling microscale processing: combined Raman and absorbance spectroscopy for microfluidic on-line monitoring (2021) Anal. Chem., 93, pp. 1643-1651; Savosina, J., Agafonova-Moroz, M., Yaroshenko, I., Ashina, J., Babain, V., Lumpov, A., Legin, A., Kirsanov, D., Plutonium (IV) quantification in technologically relevant media using potentiometric sensor array (2020) Sensors, 20. , paper #1604; Agafonova-Moroz, M., Savosina, J., Voroshilov, Y., Lukin, S., Lumpov, A., Babain, V., Oleneva, E., Kirsanov, D., Quantification of thorium and uranium in real process streams of Mayak radiochemical plant using potentiometric multisensor array (2020) J. Radioanal. Nucl. Chem., 323, pp. 605-612; Guery, M., Some applications of gamma absorptiometry and spectrometry for the control of nuclear materials (1991) J. Radioanal. Nucl. Chem., 178, pp. 266-273; John, J., Šebesta, F., Spěváčková, V., Determination of uranium in solutions and sorbents by soft gamma-ray absorptiometry (1991) J. Radioanal. Nucl. Chem., 152, pp. 67-80; Ottmar, H., (1983) ESARDA Bull., 4, p. 19; Ottmar, H., Eberle, H., The Hybrid K-Edge/K-XRF Densitometer: Principles-Design-Performance. KFK-4590 (1991), Germany; Ottmar, H., Eberle, H., Daures, P., Janssens, W., Ougier, M., Peerani, P., BlohmHieber, U., MacLean, F., In: Proceedings of the 19th Annual ESARDA Symposium (1997), pp. 211-219. , Montpellier France May 13–15; McIntosh, K.G., Reilly, S.D., Havrilla, G.J., Determination of plutonium in spent nuclear fuel using high resolution X-ray (2015) Spectrochim. Acta Part B At. Spectrosc., 110, pp. 91-95; Bushuev, A.V., Galkov, V.I., Zbonarev, A.V., Zolotov, A.F., Kutuzov, A.A., Mel'nichenko, N.A., Ozerkov, V.N., Chachin, V.V., A nondestructive method of determining the Pu/U ratio in fast reactor fuel elements, based on x-ray spectrometry (1982) Atom. Energy, 53, pp. 11-14; Park, S.-H., Jo, K.H., Lee, S.K., Seo, H., Lee, C., Won, B.-H., Ahn, S.-K., Ku, J.-H., Application of Compton-suppressed self-induced XRF to spent nuclear fuel measurement (2017) J. Kor. Phys. Soc., 71, pp. 543-547; Mark, H., Workman, J., Chemometrics in Spectroscopy (2018), Second ed. Elsevier Inc; Kirsanov, D., Panchuk, V., Goydenko, A., Khaydukova, M., Semenov, V., Legin, A., Improving precision of X-ray fluorescence analysis of lanthanide mixtures using partial least squares regression (2015) Spectrochim. Acta Part B At. Spectrosc., 113, pp. 126-131; Kirsanov, D., Panchuk, V., Agafonova-Moroz, M., Khaydukova, M., Lumpov, A., Semenov, V., Legin, A., A sample-effective calibration design for multiple components (2014) Analyst, 139, pp. 4303-4309; Wold, S., Sjöström, M., Eriksson, L., PLS-regression: a basic tool of chemometrics (2001) Chemometr. Intell. Lab. Syst., 58, pp. 109-130; Stone, M., Cross-validatory choice and assessment of statistical predictions (1974) J.R. Statist. Soc. B, 36, pp. 111-147; Smit, S., van Breemen, M.J., Hoefsloot, H.C.J., Smilde, A.K., Aerts, J.M.F.G., de Koster, C.G., Assessing the statistical validity of proteomics based biomarkers (2007) Anal. Chim. Acta, 592, pp. 210-217; R: A Language and Environment for Statistical Computing (2022), https://www.R-project.org/, R Foundation for Statistical Computing Vienna, Austria URL; Kucheryavskiy, S., Mdatools – R package for chemometrics (2020) Chemometr. Intell. Lab. Syst., 198
PY - 2023/1/25
Y1 - 2023/1/25
N2 - Quantitative analysis of spent nuclear fuel (SNF) is a very challenging task. High radioactivity, complex chemical composition and personnel safety requirements severely limit the number of analytical tools suitable for this problem. There is an urgent need for the methods that would provide for remote on-line quantification of elements in spent nuclear fuel and its reprocessing technological solutions. Here we propose a novel approach based on the registration of X-ray fluorescence radiation from SNF samples induced by fission products radioactivity. In this case the X-ray excitation conditions will obviously vary from sample to sample; moreover the resulting spectra will be a complex superposition of numerous signals from soft gamma emitters and X-ray fluorescence of various nature. These complex spectra can be effectively treated with chemometric data processing for quantification of particular elements. We have demonstrated the validity of this approach for direct analysis of U, Zr and Mo in SNF raffinate. © 2022 Elsevier B.V.
AB - Quantitative analysis of spent nuclear fuel (SNF) is a very challenging task. High radioactivity, complex chemical composition and personnel safety requirements severely limit the number of analytical tools suitable for this problem. There is an urgent need for the methods that would provide for remote on-line quantification of elements in spent nuclear fuel and its reprocessing technological solutions. Here we propose a novel approach based on the registration of X-ray fluorescence radiation from SNF samples induced by fission products radioactivity. In this case the X-ray excitation conditions will obviously vary from sample to sample; moreover the resulting spectra will be a complex superposition of numerous signals from soft gamma emitters and X-ray fluorescence of various nature. These complex spectra can be effectively treated with chemometric data processing for quantification of particular elements. We have demonstrated the validity of this approach for direct analysis of U, Zr and Mo in SNF raffinate. © 2022 Elsevier B.V.
KW - Chemometrics
KW - Elemental analysis
KW - Spent nuclear fuel
KW - X-ray fluorescence
KW - Data handling
KW - Fission products
KW - Fluorescence
KW - Gamma rays
KW - Nuclear fuel cladding
KW - Nuclear fuel reprocessing
KW - Radioactivity
KW - Analytical tool
KW - Chemical compositions
KW - Chemometric data processing
KW - Chemometrices
KW - Complex chemicals
KW - On-line quantification
KW - Personnel safety
KW - Safety requirements
KW - Spent nuclear fuels
KW - X ray fluorescence
KW - Chemical analysis
KW - americium
KW - barium
KW - curium
KW - iodine
KW - lanthanide
KW - molybdenum
KW - neptunium
KW - nuclear fuel
KW - plutonium
KW - silicon
KW - spent nuclear fuel
KW - strontium
KW - strontium 90
KW - technetium 99m
KW - unclassified drug
KW - uranium
KW - yttrium
KW - yttrium 90
KW - zirconium
KW - Article
KW - chemometrics
KW - concentration (parameter)
KW - data processing
KW - elemental analysis
KW - excitation
KW - gamma radiation
KW - nuclear energy
KW - quantitative analysis
KW - radioactivity
KW - sample
KW - validity
KW - radioactive waste
KW - X ray
KW - Gamma Rays
KW - Radioactive Waste
KW - X-Rays
UR - https://www.mendeley.com/catalogue/0431fa9b-b4b9-35af-8215-1a1517bd669b/
U2 - 10.1016/j.aca.2022.340694
DO - 10.1016/j.aca.2022.340694
M3 - статья
VL - 1239
JO - Analytica Chimica Acta
JF - Analytica Chimica Acta
SN - 0003-2670
M1 - 340694
ER -
ID: 114408051