Research output: Contribution to journal › Article › peer-review
Positivity of Minimal Coordinate Splines. / Dem’yanovich, Yu. K. ; Ivantsova, O. N. ; Khodakovskii, V. A. .
In: Journal of Mathematical Sciences, Vol. 219, No. 6, 2016, p. 936-958.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Positivity of Minimal Coordinate Splines
AU - Dem’yanovich, Yu. K.
AU - Ivantsova, O. N.
AU - Khodakovskii, V. A.
N1 - Dem’yanovich, Y.K., Ivantsova, O.N. & Khodakovskii, V.A. Positivity of Minimal Coordinate Splines. J Math Sci 219, 936–958 (2016). https://doi.org/10.1007/s10958-016-3156-8
PY - 2016
Y1 - 2016
N2 - We obtain sufficient positivity conditions for continuously differentiable minimal coordinate splines of the second order in a general case. These conditions are used for constructing positive exponential continuously differentiable coordinate splines. We establish the positivity of hyperbolic and fractional-rational minimal coordinate splines without any restrictions on a grid.
AB - We obtain sufficient positivity conditions for continuously differentiable minimal coordinate splines of the second order in a general case. These conditions are used for constructing positive exponential continuously differentiable coordinate splines. We establish the positivity of hyperbolic and fractional-rational minimal coordinate splines without any restrictions on a grid.
UR - https://link.springer.com/article/10.1007/s10958-016-3156-8
M3 - Article
VL - 219
SP - 936
EP - 958
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 6
ER -
ID: 9319875