Standard

Positivity of Minimal Coordinate Splines. / Dem’yanovich, Yu. K. ; Ivantsova, O. N. ; Khodakovskii, V. A. .

In: Journal of Mathematical Sciences, Vol. 219, No. 6, 2016, p. 936-958.

Research output: Contribution to journalArticlepeer-review

Harvard

Dem’yanovich, YK, Ivantsova, ON & Khodakovskii, VA 2016, 'Positivity of Minimal Coordinate Splines', Journal of Mathematical Sciences, vol. 219, no. 6, pp. 936-958.

APA

Dem’yanovich, Y. K., Ivantsova, O. N., & Khodakovskii, V. A. (2016). Positivity of Minimal Coordinate Splines. Journal of Mathematical Sciences, 219(6), 936-958.

Vancouver

Dem’yanovich YK, Ivantsova ON, Khodakovskii VA. Positivity of Minimal Coordinate Splines. Journal of Mathematical Sciences. 2016;219(6):936-958.

Author

Dem’yanovich, Yu. K. ; Ivantsova, O. N. ; Khodakovskii, V. A. . / Positivity of Minimal Coordinate Splines. In: Journal of Mathematical Sciences. 2016 ; Vol. 219, No. 6. pp. 936-958.

BibTeX

@article{6004aa4ffb1d472f9e4575276b68fbbb,
title = "Positivity of Minimal Coordinate Splines",
abstract = "We obtain sufficient positivity conditions for continuously differentiable minimal coordinate splines of the second order in a general case. These conditions are used for constructing positive exponential continuously differentiable coordinate splines. We establish the positivity of hyperbolic and fractional-rational minimal coordinate splines without any restrictions on a grid.",
author = "Dem{\textquoteright}yanovich, {Yu. K.} and Ivantsova, {O. N.} and Khodakovskii, {V. A.}",
note = "Dem{\textquoteright}yanovich, Y.K., Ivantsova, O.N. & Khodakovskii, V.A. Positivity of Minimal Coordinate Splines. J Math Sci 219, 936–958 (2016). https://doi.org/10.1007/s10958-016-3156-8",
year = "2016",
language = "English",
volume = "219",
pages = "936--958",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "6",

}

RIS

TY - JOUR

T1 - Positivity of Minimal Coordinate Splines

AU - Dem’yanovich, Yu. K.

AU - Ivantsova, O. N.

AU - Khodakovskii, V. A.

N1 - Dem’yanovich, Y.K., Ivantsova, O.N. & Khodakovskii, V.A. Positivity of Minimal Coordinate Splines. J Math Sci 219, 936–958 (2016). https://doi.org/10.1007/s10958-016-3156-8

PY - 2016

Y1 - 2016

N2 - We obtain sufficient positivity conditions for continuously differentiable minimal coordinate splines of the second order in a general case. These conditions are used for constructing positive exponential continuously differentiable coordinate splines. We establish the positivity of hyperbolic and fractional-rational minimal coordinate splines without any restrictions on a grid.

AB - We obtain sufficient positivity conditions for continuously differentiable minimal coordinate splines of the second order in a general case. These conditions are used for constructing positive exponential continuously differentiable coordinate splines. We establish the positivity of hyperbolic and fractional-rational minimal coordinate splines without any restrictions on a grid.

UR - https://link.springer.com/article/10.1007/s10958-016-3156-8

M3 - Article

VL - 219

SP - 936

EP - 958

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 6

ER -

ID: 9319875