Standard

Polynomial approximations on disjoint segments. / Mezhevich, K. G.; Shirokov, N. A.

In: Journal of Mathematical Sciences , Vol. 98, No. 6, 2000, p. 706-716.

Research output: Contribution to journalArticlepeer-review

Harvard

Mezhevich, KG & Shirokov, NA 2000, 'Polynomial approximations on disjoint segments', Journal of Mathematical Sciences , vol. 98, no. 6, pp. 706-716. https://doi.org/10.1007/BF02355386

APA

Mezhevich, K. G., & Shirokov, N. A. (2000). Polynomial approximations on disjoint segments. Journal of Mathematical Sciences , 98(6), 706-716. https://doi.org/10.1007/BF02355386

Vancouver

Mezhevich KG, Shirokov NA. Polynomial approximations on disjoint segments. Journal of Mathematical Sciences . 2000;98(6):706-716. https://doi.org/10.1007/BF02355386

Author

Mezhevich, K. G. ; Shirokov, N. A. / Polynomial approximations on disjoint segments. In: Journal of Mathematical Sciences . 2000 ; Vol. 98, No. 6. pp. 706-716.

BibTeX

@article{744b318ccce34b7d87d613bcf755cfc9,
title = "Polynomial approximations on disjoint segments",
abstract = "The problem on polynomial approximation of functions from some class defined on a compact set E of the complex plane is studied. The case where E is the union of a finite number of segments is considered.",
author = "Mezhevich, {K. G.} and Shirokov, {N. A.}",
year = "2000",
doi = "10.1007/BF02355386",
language = "English",
volume = "98",
pages = "706--716",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "6",

}

RIS

TY - JOUR

T1 - Polynomial approximations on disjoint segments

AU - Mezhevich, K. G.

AU - Shirokov, N. A.

PY - 2000

Y1 - 2000

N2 - The problem on polynomial approximation of functions from some class defined on a compact set E of the complex plane is studied. The case where E is the union of a finite number of segments is considered.

AB - The problem on polynomial approximation of functions from some class defined on a compact set E of the complex plane is studied. The case where E is the union of a finite number of segments is considered.

UR - http://www.scopus.com/inward/record.url?scp=30344454515&partnerID=8YFLogxK

U2 - 10.1007/BF02355386

DO - 10.1007/BF02355386

M3 - Article

AN - SCOPUS:30344454515

VL - 98

SP - 706

EP - 716

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 6

ER -

ID: 86661116