DOI

  • Evgeny A. Lysenko
  • Alevtina I. Kulebyakina
  • Pavel S. Chelushkin
  • Artem M. Rumyantsev
  • Elena Yu Kramarenko
  • Alexander B. Zezin

Mixed polymer micelles with hydrophobic polystyrene (PS) core and ionic amphiphilic poly(4-vinylpyridine)/poly(N-ethyl-4-vinylpyridinium bromide) corona (P4VP/PEVP) spontaneously self-assembled from mixtures of PS-b-PEVP and PS-b-P4VP macromolecules in dimethylformamide/ methanol/water selective solvent. The fraction of PEVP units in corona was β = [PEVP]/([PEVP] + [P4VP]) = 0.05-1.0. Micelles were transferred into pure water via dialysis technique and pH was adjusted to 9, where P4VP blocks are insoluble. Structural characteristics of micelles as a function of corona composition β were investigated. Methods of dynamic and static light scattering, electrophoretic mobility measurements, sedimentation velocity, transmission electron microscopy, and UV spectrophotometry were applied. Spherical morphology with core (PS)-shell (P4VP)-corona (PEVP) organization was postulated. Micelles demonstrated a remarkable inflection in structural characteristics near β ̃ 0.5-0.7. Above this region, aggregation number (m), core and corona radii of mixed micelles coincided with those of individual PS-b-PEVP micelles. When β decreased below 0.5, dramatic growth of aggregation number was observed, accompanied by growth in micelle size and stretching PEVP chains. At β below 0.2, dispersions of mixed micelles were unstable and easily precipitated upon addition of NaCl. Scaling relationships between micelle characteristics and β were obtained via minimization the micelle free energy, taking into account electrostatic, osmotic, volume, and surface contributions. Theoretical estimations predicted dramatic influence of β on aggregation number, m ̃ β -3. This result is in general agreement with experimental data and confirms the correctness of the core-shell-corona model. The inflection in micelle characteristics entails drastic changes in micelle dispersion stability in the presence of oppositely charged polymeric (sodium polymethacrylate) or amphiphilic (sodium dodecyl sulfate) complexing agents.

Original languageEnglish
Pages (from-to)12663-12670
Number of pages8
JournalLangmuir
Volume28
Issue number34
DOIs
StatePublished - 28 Aug 2012

    Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

ID: 48334872