Optical pumping of excited exciton states in semiconductor quantum wells is a tool for the realization of ultracompact terahertz (THz) lasers based on stimulated optical transition between excited (2p) and ground (1s) exciton states. We show that the probability of two-photon absorption by a 2p exciton is strongly dependent on the polarization of both photons. Variation of the threshold power for THz lasing by a factor of 5 is predicted by switching from linear to circular pumping. We calculate the polarization dependence of the THz emission and identify photon polarization configurations for achieving maximum THz photon generation quantum efficiency.
Original languageEnglish
Pages (from-to)085321_1-9
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume88
Issue number8
DOIs
StatePublished - 2013

ID: 5647236