Documents

DOI

The tantalum oxide thin films are promising materials for various applications: as coatings in optical devices, as dielectric layers for micro and nanoelectronics, and for thin-films solid-state lithium-ion batteries (SSLIBs). This article is dedicated to the Ta-O thin-film system synthesis by the atomic layer deposition (ALD) which allows to deposit high quality films and coatings with excellent uniformity and conformality. Tantalum (V) ethoxide (Ta(OEt)5) and remote oxygen plasma were used as tantalum-containing reagent and oxidizing co-reagent, respectively. The influence of deposition parameters (reactor and evaporator temperature, pulse and purge times) on the growth rate were studied. The thickness of the films were measured by spectroscopic ellipsometry, scanning electron microscopy and X-ray reflectometry. The temperature range of the ALD window was 250–300 C, the growth per cycle was about 0.05 nm/cycle. Different morphology of films deposited on silicon and stainless steel was found. According to the X-ray diffraction data, the as-prepared films were amorphous. But the heat treatment study shows crystallization at 800 C with the formation of
the polycrystalline Ta2O5 phase with a rhombic structural type (Pmm2). The results of the X-ray reflectometry show the Ta-O films’ density is 7.98 g/cm3, which is close to the density of crystalline Ta2O5 of the rhombic structure (8.18 g/cm3). The obtained thin films have a low roughness and high uniformity. The chemical composition of the surface and bulk of Ta-O coatings was studied by X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. Surface of the films contain Ta2O5 and some carbon contamination, but the bulk of the films does not contain carbon and any precursor residues. Cyclic voltammetry (CVA) showed that there is no current increase for tantalum (V) oxide in a potential window of 3–4.2 V and has prospects of use as protective coatings for cathode materials of SSLIBs.
Original languageEnglish
Article number1206
Pages (from-to)1-15
Number of pages15
JournalCoatings
Volume11
Issue number10
DOIs
StatePublished - 1 Oct 2021

    Research areas

  • LIB’s protective coatings, Li-ion batteries, Plasma-enhanced atomic layer deposition, Solid-state batteries, Spectroscopic ellipsometry, Tantalum oxide, Thin films, DIFFUSION BARRIER PROPERTIES, TAN THIN-FILMS, ELECTRICAL-PROPERTIES, li-ion batteries, plasma-enhanced atomic layer deposition, thin films, LIB's protective coatings, spectroscopic ellipsometry, TA2O5, GROWTH, LITHIUM ION BATTERY, solid-state batteries, tantalum oxide

    Scopus subject areas

  • Materials Chemistry
  • Surfaces, Coatings and Films
  • Surfaces and Interfaces

ID: 86113971