Complex thermo-mechanical processing routes are often developed for fabrication of ultra-fine grained (UFG) metallic materials with superior mechanical properties. The processed UFG metallic materials often have to undergo additional metalforming operations for fabrication of complex shape parts or tools that can significantly affect their microstructure and crystallographic texture, thus further changing their mechanical properties. The development of novel thermo-mechanical processing routes for fabrication of UFG metallic materials or for further metalforming operations is very time-consuming and expensive due to much higher cost of the UFG metallic materials. The objective of this work is to perform physical simulation of hot rolling of UFG pure Ti obtained via severe plastic deformation and to analyze the effect of hot rolling on the microstructure, crystallographic texture, and hardness of the material. It is demonstrated that physical simulation of metalforming processes for UFG metallic materials can
Original languageEnglish
Pages (from-to)2315-2326
JournalMetallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science
Volume45
Issue number6
DOIs
StatePublished - 2014

ID: 5837087