Translation fidelity in Saccharomyces yeasts is determined by genetic and epigenetic (prion) factors. A study was made of S. cerevisiae strains containing the nonchromosomal determinant [ISP +], described earlier. Some of its properties suggest that [ISP +] is a prion. [ISP +] is expressed phenotypically as an antisuppressor of two sup35 mutations and can be cured with guanidine chloride (GuHCl). It was shown that sup35 mutants containing [ISP +] carried additional sup45 mutations. These mutations caused amino acid substitutions in different regions of translation termination factor eRF1, encoded by SUP45. Strains bearing the sup35-25 mutation contained the sup45 mutation that caused amino acid substitution at position 400 of eRF1; strains bearing sup35-10 contained the mutation that altered eRF1 at position 75. Thus, the antisuppressor phenotype of the [ISP +] strains proved to depend on the interaction of sup35 and sup45 mutations, as well as on the GuHCl-curable epigenetic determinant.

Original languageEnglish
Pages (from-to)758-763
Number of pages6
JournalMolecular Biology
Volume40
Issue number5
DOIs
StatePublished - Oct 2006

    Scopus subject areas

  • Biophysics
  • Structural Biology

    Research areas

  • Epigenetic inheritance, SUP35, SUP45, Translation fidelity, Yeast prions

ID: 89191542