We are interested in a time harmonic acoustic problem in a waveguide with locally perturbed sound hard walls. We consider a setting where an observer generates incident plane waves at −∞ and probes the resulting scattered field at −∞ and +∞. Practically, this is equivalent to measure the reflection and transmission coefficients respectively denoted R and T. In [9], a technique has been proposed to construct waveguides with smooth walls such that R=0 and |T|=1 (non-reflection). However the approach fails to ensure T=1 (perfect transmission without phase shift). In this work, first we establish a result explaining this observation. More precisely, we prove that for wavenumbers smaller than a given bound k depending on the geometry, we cannot have T=1 so that the observer can detect the presence of the defect if he/she is able to measure the phase at +∞. In particular, if the perturbation is smooth and small (in amplitude and in width), k is very close to the threshold wavenumber. Then, in a second step, we change the point of view and, for a given wavenumber, working with singular perturbations of the domain, we show how to obtain T=1. In this case, the scattered field is exponentially decaying both at −∞ and +∞. We implement numerically the method to provide examples of such undetectable defects.

Original languageEnglish
Pages (from-to)79-105
Number of pages27
JournalJournal des Mathematiques Pures et Appliquees
Volume111
Issue number3
DOIs
StatePublished - 1 Mar 2018

    Research areas

  • Acoustic waveguide, Asymptotic analysis, Invisibility, Scattering matrix

    Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

ID: 35201408