Research output: Contribution to journal › Article › peer-review
PDMS-CNT composite for soft bioelectronic neuronal implants. / Баршутина, Мария Николаевна; Кириченко, Сергей Олегович; Водолажский, Виталий Александрович; Лопачев, А.В.; Баршутин С.Н., ; Горский, Олег Владимирович; Дерябин, Константин Валерьевич; Sufianov, Albert A.; Булгин Д.В., ; Исламова, Регина Маратовна; Ткачев, А.Г.; Мусиенко, Павел Евгеньевич.
In: Composites Part B: Engineering, Vol. 247, 110286, 01.12.2022, p. 110286.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - PDMS-CNT composite for soft bioelectronic neuronal implants
AU - Баршутина, Мария Николаевна
AU - Кириченко, Сергей Олегович
AU - Водолажский, Виталий Александрович
AU - Лопачев, А.В.
AU - Баршутин С.Н., null
AU - Горский, Олег Владимирович
AU - Дерябин, Константин Валерьевич
AU - Sufianov, Albert A.
AU - Булгин Д.В.,
AU - Исламова, Регина Маратовна
AU - Ткачев, А.Г.
AU - Мусиенко, Павел Евгеньевич
N1 - Publisher Copyright: © 2022
PY - 2022/12/1
Y1 - 2022/12/1
N2 - This communication reports the detailed description of a technology for the manufacturing of stretchable and biointegrated neuronal implants based on carbon nanotubes (CNTs) and poly(dimethylsiloxane) (PDMS). An essential part of the proposed technology is the fabrication of PDMS-CNT composite materials which are characterized by their high level of biocompatibility, long-term biostability, outstanding tensile strength, high values of charge storage capacity, and non-Faradaic type of electrode processes. To fabricate the stretchable spinal cord implants from obtained PDMS-CNT composite materials, sophisticated casting metal molds were used. The mechanical, electrical and biological properties of PDMS-CNT composite materials and neuronal implants were characterized using multiple methods such as SEM, EDXRF analysis, tensile mechanical testing, cytotoxicity testing and cyclic voltammetry (CV). Furthermore, the functionality of stretchable spinal cord implants based on PDMS-CNT composite materials was studied using in-vivo tests on laboratory animals that indicated high efficiency of the proposed technology for monitoring and stimulation of neuronal activity in mammals.
AB - This communication reports the detailed description of a technology for the manufacturing of stretchable and biointegrated neuronal implants based on carbon nanotubes (CNTs) and poly(dimethylsiloxane) (PDMS). An essential part of the proposed technology is the fabrication of PDMS-CNT composite materials which are characterized by their high level of biocompatibility, long-term biostability, outstanding tensile strength, high values of charge storage capacity, and non-Faradaic type of electrode processes. To fabricate the stretchable spinal cord implants from obtained PDMS-CNT composite materials, sophisticated casting metal molds were used. The mechanical, electrical and biological properties of PDMS-CNT composite materials and neuronal implants were characterized using multiple methods such as SEM, EDXRF analysis, tensile mechanical testing, cytotoxicity testing and cyclic voltammetry (CV). Furthermore, the functionality of stretchable spinal cord implants based on PDMS-CNT composite materials was studied using in-vivo tests on laboratory animals that indicated high efficiency of the proposed technology for monitoring and stimulation of neuronal activity in mammals.
KW - Biocompatibility
KW - Bioelectronics
KW - Carbon nanotubes
KW - Molding
KW - Nanocomposites
KW - Soft neuronal implants
UR - http://www.scopus.com/inward/record.url?scp=85139338543&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/a0384117-bbfb-3f95-9486-01d1ba9c5853/
U2 - 10.1016/j.compositesb.2022.110286
DO - 10.1016/j.compositesb.2022.110286
M3 - Article
VL - 247
SP - 110286
JO - Composites Part B: Engineering
JF - Composites Part B: Engineering
SN - 1359-8368
M1 - 110286
ER -
ID: 99104842