Standard

Paltanea Type Theorems on Estimation by Positive Discrete Functionals. / Ikhsanov, L.N.

In: Journal of Mathematical Sciences, Vol. 284, No. 6, 26.09.2024, p. 778-787.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

Ikhsanov, L.N. / Paltanea Type Theorems on Estimation by Positive Discrete Functionals. In: Journal of Mathematical Sciences. 2024 ; Vol. 284, No. 6. pp. 778-787.

BibTeX

@article{396c2329ceb44bbb9272f4cdccb09891,
title = "Paltanea Type Theorems on Estimation by Positive Discrete Functionals",
abstract = "The article is devoted to inequalities of the type (Formula presented.) where F is a functional of the form Ff=∑y∈Yγyfy, and Y is an at most countable set with no accumulation points on R, γ : Y → (0, ∞). {\textcopyright} The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024.",
author = "L.N. Ikhsanov",
note = "Export Date: 19 October 2024 Адрес для корреспонденции: Ikhsanov, L.N.; St.Petersburg State UniversityRussian Federation; эл. почта: lv.ikhs@gmail.com",
year = "2024",
month = sep,
day = "26",
doi = "10.1007/s10958-024-07389-2",
language = "Английский",
volume = "284",
pages = "778--787",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "6",

}

RIS

TY - JOUR

T1 - Paltanea Type Theorems on Estimation by Positive Discrete Functionals

AU - Ikhsanov, L.N.

N1 - Export Date: 19 October 2024 Адрес для корреспонденции: Ikhsanov, L.N.; St.Petersburg State UniversityRussian Federation; эл. почта: lv.ikhs@gmail.com

PY - 2024/9/26

Y1 - 2024/9/26

N2 - The article is devoted to inequalities of the type (Formula presented.) where F is a functional of the form Ff=∑y∈Yγyfy, and Y is an at most countable set with no accumulation points on R, γ : Y → (0, ∞). © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024.

AB - The article is devoted to inequalities of the type (Formula presented.) where F is a functional of the form Ff=∑y∈Yγyfy, and Y is an at most countable set with no accumulation points on R, γ : Y → (0, ∞). © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024.

UR - https://www.mendeley.com/catalogue/ea9da94d-e743-3696-80d1-23b6bfb60955/

U2 - 10.1007/s10958-024-07389-2

DO - 10.1007/s10958-024-07389-2

M3 - статья

VL - 284

SP - 778

EP - 787

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 6

ER -

ID: 126355099