Standard

Optical anisotropy and pinning of the linear polarization of light in semiconductor microcavities. / Kłopotowski; Martín, M. D.; Amo, A.; Viña, L.; Shelykh, I. A.; Glazov, M. M.; Malpuech, G.; Kavokin, A. V.; André, R.

In: Solid State Communications, Vol. 139, No. 10, 01.01.2006, p. 511-515.

Research output: Contribution to journalArticlepeer-review

Harvard

Kłopotowski, Martín, MD, Amo, A, Viña, L, Shelykh, IA, Glazov, MM, Malpuech, G, Kavokin, AV & André, R 2006, 'Optical anisotropy and pinning of the linear polarization of light in semiconductor microcavities', Solid State Communications, vol. 139, no. 10, pp. 511-515. https://doi.org/10.1016/j.ssc.2006.07.016

APA

Kłopotowski, Martín, M. D., Amo, A., Viña, L., Shelykh, I. A., Glazov, M. M., Malpuech, G., Kavokin, A. V., & André, R. (2006). Optical anisotropy and pinning of the linear polarization of light in semiconductor microcavities. Solid State Communications, 139(10), 511-515. https://doi.org/10.1016/j.ssc.2006.07.016

Vancouver

Kłopotowski, Martín MD, Amo A, Viña L, Shelykh IA, Glazov MM et al. Optical anisotropy and pinning of the linear polarization of light in semiconductor microcavities. Solid State Communications. 2006 Jan 1;139(10):511-515. https://doi.org/10.1016/j.ssc.2006.07.016

Author

Kłopotowski ; Martín, M. D. ; Amo, A. ; Viña, L. ; Shelykh, I. A. ; Glazov, M. M. ; Malpuech, G. ; Kavokin, A. V. ; André, R. / Optical anisotropy and pinning of the linear polarization of light in semiconductor microcavities. In: Solid State Communications. 2006 ; Vol. 139, No. 10. pp. 511-515.

BibTeX

@article{18b8000cfde2413fbd759b2276aa5ada,
title = "Optical anisotropy and pinning of the linear polarization of light in semiconductor microcavities",
abstract = "We report strong experimental evidence of the optical anisotropy in a CdTe-based microcavity: the polarization of light is pinned to one of the crystallographic axes independently of the polarization of the excitation. The polarization degree depends strongly on the excitation power, reaching almost 100% in the stimulated regime. The relaxation time of the polarization is about 1 ns. We argue that all of this is an effect of a splitting of the polariton doublet at k = 0. We consider different sources for the splitting and conclude that the most likely one is optical birefringence in the mirrors and/or the cavity.",
keywords = "A. Polaritons, D. Birefringence, D. Polarization, E. Time-resolved spectroscopy",
author = "K{\l}opotowski and Mart{\'i}n, {M. D.} and A. Amo and L. Vi{\~n}a and Shelykh, {I. A.} and Glazov, {M. M.} and G. Malpuech and Kavokin, {A. V.} and R. Andr{\'e}",
year = "2006",
month = jan,
day = "1",
doi = "10.1016/j.ssc.2006.07.016",
language = "English",
volume = "139",
pages = "511--515",
journal = "Solid State Communications",
issn = "0038-1098",
publisher = "Elsevier",
number = "10",

}

RIS

TY - JOUR

T1 - Optical anisotropy and pinning of the linear polarization of light in semiconductor microcavities

AU - Kłopotowski,

AU - Martín, M. D.

AU - Amo, A.

AU - Viña, L.

AU - Shelykh, I. A.

AU - Glazov, M. M.

AU - Malpuech, G.

AU - Kavokin, A. V.

AU - André, R.

PY - 2006/1/1

Y1 - 2006/1/1

N2 - We report strong experimental evidence of the optical anisotropy in a CdTe-based microcavity: the polarization of light is pinned to one of the crystallographic axes independently of the polarization of the excitation. The polarization degree depends strongly on the excitation power, reaching almost 100% in the stimulated regime. The relaxation time of the polarization is about 1 ns. We argue that all of this is an effect of a splitting of the polariton doublet at k = 0. We consider different sources for the splitting and conclude that the most likely one is optical birefringence in the mirrors and/or the cavity.

AB - We report strong experimental evidence of the optical anisotropy in a CdTe-based microcavity: the polarization of light is pinned to one of the crystallographic axes independently of the polarization of the excitation. The polarization degree depends strongly on the excitation power, reaching almost 100% in the stimulated regime. The relaxation time of the polarization is about 1 ns. We argue that all of this is an effect of a splitting of the polariton doublet at k = 0. We consider different sources for the splitting and conclude that the most likely one is optical birefringence in the mirrors and/or the cavity.

KW - A. Polaritons

KW - D. Birefringence

KW - D. Polarization

KW - E. Time-resolved spectroscopy

UR - http://www.scopus.com/inward/record.url?scp=33747034132&partnerID=8YFLogxK

U2 - 10.1016/j.ssc.2006.07.016

DO - 10.1016/j.ssc.2006.07.016

M3 - Article

AN - SCOPUS:33747034132

VL - 139

SP - 511

EP - 515

JO - Solid State Communications

JF - Solid State Communications

SN - 0038-1098

IS - 10

ER -

ID: 36658409