Standard

On-Demand Plasmon Nanoparticle-Embedded Laser-Induced Periodic Surface Structures (LIPSSs) on Silicon for Optical Nanosensing. / Бородаенко, Юлия; Сюбаев, Сергей; Хайруллина, Евгения Мусаевна; Тумкин, Илья Игоревич; Гурбатов, Станислав; Мироненко, Александр; Мицай, Евгений; Жижченко, Алексей; Модин, Евгений; Гуревич, Евгений; Кучмижак, Александр.

In: Advanced Optical Materials, Vol. 10, No. 21, 2201094, 04.11.2022.

Research output: Contribution to journalArticlepeer-review

Harvard

Бородаенко, Ю, Сюбаев, С, Хайруллина, ЕМ, Тумкин, ИИ, Гурбатов, С, Мироненко, А, Мицай, Е, Жижченко, А, Модин, Е, Гуревич, Е & Кучмижак, А 2022, 'On-Demand Plasmon Nanoparticle-Embedded Laser-Induced Periodic Surface Structures (LIPSSs) on Silicon for Optical Nanosensing', Advanced Optical Materials, vol. 10, no. 21, 2201094. https://doi.org/10.1002/adom.202201094

APA

Бородаенко, Ю., Сюбаев, С., Хайруллина, Е. М., Тумкин, И. И., Гурбатов, С., Мироненко, А., Мицай, Е., Жижченко, А., Модин, Е., Гуревич, Е., & Кучмижак, А. (2022). On-Demand Plasmon Nanoparticle-Embedded Laser-Induced Periodic Surface Structures (LIPSSs) on Silicon for Optical Nanosensing. Advanced Optical Materials, 10(21), [2201094]. https://doi.org/10.1002/adom.202201094

Vancouver

Бородаенко Ю, Сюбаев С, Хайруллина ЕМ, Тумкин ИИ, Гурбатов С, Мироненко А et al. On-Demand Plasmon Nanoparticle-Embedded Laser-Induced Periodic Surface Structures (LIPSSs) on Silicon for Optical Nanosensing. Advanced Optical Materials. 2022 Nov 4;10(21). 2201094. https://doi.org/10.1002/adom.202201094

Author

Бородаенко, Юлия ; Сюбаев, Сергей ; Хайруллина, Евгения Мусаевна ; Тумкин, Илья Игоревич ; Гурбатов, Станислав ; Мироненко, Александр ; Мицай, Евгений ; Жижченко, Алексей ; Модин, Евгений ; Гуревич, Евгений ; Кучмижак, Александр. / On-Demand Plasmon Nanoparticle-Embedded Laser-Induced Periodic Surface Structures (LIPSSs) on Silicon for Optical Nanosensing. In: Advanced Optical Materials. 2022 ; Vol. 10, No. 21.

BibTeX

@article{661fa23aaf7d4ebea5a51db7355c4a78,
title = "On-Demand Plasmon Nanoparticle-Embedded Laser-Induced Periodic Surface Structures (LIPSSs) on Silicon for Optical Nanosensing",
abstract = "Ultrashort laser pulses deliver electromagnetic energy to matter causing its localized heating that can be used for both material removal via ablation/evaporation and driving interface chemical reactions. Here, it is shown that both mentioned processes can be simultaneously combined within straightforward laser nanotexturing of Si wafer in a functionalizing solution to produce a practically relevant metal–semiconductor surface nano-morphology. Such unique hybrid morphology represents deep-subwavelength Si laser-induced periodic surface structures (LIPSSs) with an extremely short period down to 70 nm and high-aspect-ratio nano-trenches loaded with controllable amount of plasmonic nanoparticles formed via laser-induced decomposition of the precursor noble-metal salts. Moreover, heat localization driving reduction process is utilized to produce surface morphology locally decorated with dissimilar plasmon-active nanoparticles. Light-absorbing deep-subwavelength Si LIPSSs loaded with controllable amount of noble-metal nanoparticles represent an attractive architecture for plasmon-related applications such as optical nanosensing where efficient coupling of the propagating optical waves to highly localized electromagnetic “hot spots” is a mandatory requirement. To support this statement, applicability of such hybrid morphology for fluorescence-based detection of nanomolar concentrations of mercury cations in solution is demonstrated.",
keywords = "femtosecond laser pulses, laser-induced periodic surface structures, metal–semiconductor nanostructures, optical sensing, surface-enhanced fluorescence",
author = "Юлия Бородаенко and Сергей Сюбаев and Хайруллина, {Евгения Мусаевна} and Тумкин, {Илья Игоревич} and Станислав Гурбатов and Александр Мироненко and Евгений Мицай and Алексей Жижченко and Евгений Модин and Евгений Гуревич and Александр Кучмижак",
note = "Publisher Copyright: {\textcopyright} 2022 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH.",
year = "2022",
month = nov,
day = "4",
doi = "10.1002/adom.202201094",
language = "English",
volume = "10",
journal = "Advanced Optical Materials",
issn = "2195-1071",
publisher = "Wiley-Blackwell",
number = "21",

}

RIS

TY - JOUR

T1 - On-Demand Plasmon Nanoparticle-Embedded Laser-Induced Periodic Surface Structures (LIPSSs) on Silicon for Optical Nanosensing

AU - Бородаенко, Юлия

AU - Сюбаев, Сергей

AU - Хайруллина, Евгения Мусаевна

AU - Тумкин, Илья Игоревич

AU - Гурбатов, Станислав

AU - Мироненко, Александр

AU - Мицай, Евгений

AU - Жижченко, Алексей

AU - Модин, Евгений

AU - Гуревич, Евгений

AU - Кучмижак, Александр

N1 - Publisher Copyright: © 2022 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH.

PY - 2022/11/4

Y1 - 2022/11/4

N2 - Ultrashort laser pulses deliver electromagnetic energy to matter causing its localized heating that can be used for both material removal via ablation/evaporation and driving interface chemical reactions. Here, it is shown that both mentioned processes can be simultaneously combined within straightforward laser nanotexturing of Si wafer in a functionalizing solution to produce a practically relevant metal–semiconductor surface nano-morphology. Such unique hybrid morphology represents deep-subwavelength Si laser-induced periodic surface structures (LIPSSs) with an extremely short period down to 70 nm and high-aspect-ratio nano-trenches loaded with controllable amount of plasmonic nanoparticles formed via laser-induced decomposition of the precursor noble-metal salts. Moreover, heat localization driving reduction process is utilized to produce surface morphology locally decorated with dissimilar plasmon-active nanoparticles. Light-absorbing deep-subwavelength Si LIPSSs loaded with controllable amount of noble-metal nanoparticles represent an attractive architecture for plasmon-related applications such as optical nanosensing where efficient coupling of the propagating optical waves to highly localized electromagnetic “hot spots” is a mandatory requirement. To support this statement, applicability of such hybrid morphology for fluorescence-based detection of nanomolar concentrations of mercury cations in solution is demonstrated.

AB - Ultrashort laser pulses deliver electromagnetic energy to matter causing its localized heating that can be used for both material removal via ablation/evaporation and driving interface chemical reactions. Here, it is shown that both mentioned processes can be simultaneously combined within straightforward laser nanotexturing of Si wafer in a functionalizing solution to produce a practically relevant metal–semiconductor surface nano-morphology. Such unique hybrid morphology represents deep-subwavelength Si laser-induced periodic surface structures (LIPSSs) with an extremely short period down to 70 nm and high-aspect-ratio nano-trenches loaded with controllable amount of plasmonic nanoparticles formed via laser-induced decomposition of the precursor noble-metal salts. Moreover, heat localization driving reduction process is utilized to produce surface morphology locally decorated with dissimilar plasmon-active nanoparticles. Light-absorbing deep-subwavelength Si LIPSSs loaded with controllable amount of noble-metal nanoparticles represent an attractive architecture for plasmon-related applications such as optical nanosensing where efficient coupling of the propagating optical waves to highly localized electromagnetic “hot spots” is a mandatory requirement. To support this statement, applicability of such hybrid morphology for fluorescence-based detection of nanomolar concentrations of mercury cations in solution is demonstrated.

KW - femtosecond laser pulses

KW - laser-induced periodic surface structures

KW - metal–semiconductor nanostructures

KW - optical sensing

KW - surface-enhanced fluorescence

UR - http://www.scopus.com/inward/record.url?scp=85135522827&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/a1a4f03f-ebc4-38f8-a05f-928d7fccb075/

U2 - 10.1002/adom.202201094

DO - 10.1002/adom.202201094

M3 - Article

VL - 10

JO - Advanced Optical Materials

JF - Advanced Optical Materials

SN - 2195-1071

IS - 21

M1 - 2201094

ER -

ID: 97631688