Standard

On uniform approximation in R2 of continuous Banach-valued functions. / Dodonov, N. Yu.

In: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, Vol. 38, No. 2, 01.12.2005, p. 11-24.

Research output: Contribution to journalArticlepeer-review

Harvard

Dodonov, NY 2005, 'On uniform approximation in R2 of continuous Banach-valued functions', Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, vol. 38, no. 2, pp. 11-24.

APA

Dodonov, N. Y. (2005). On uniform approximation in R2 of continuous Banach-valued functions. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, 38(2), 11-24.

Vancouver

Dodonov NY. On uniform approximation in R2 of continuous Banach-valued functions. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. 2005 Dec 1;38(2):11-24.

Author

Dodonov, N. Yu. / On uniform approximation in R2 of continuous Banach-valued functions. In: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. 2005 ; Vol. 38, No. 2. pp. 11-24.

BibTeX

@article{99c56128bebe4feab3838b74d0077442,
title = "On uniform approximation in R2 of continuous Banach-valued functions",
abstract = "The method of uniform approximation on R2of an arbitrary continuous function f:R2 → X, having the bounded variation in the sense of Hardy, is constructed. In this connection, the estimate of an error in terms of the second order continuity module of a function f, is obtained.",
author = "Dodonov, {N. Yu}",
year = "2005",
month = dec,
day = "1",
language = "русский",
volume = "38",
pages = "11--24",
journal = "ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ",
issn = "1025-3106",
publisher = "Издательство Санкт-Петербургского университета",
number = "2",

}

RIS

TY - JOUR

T1 - On uniform approximation in R2 of continuous Banach-valued functions

AU - Dodonov, N. Yu

PY - 2005/12/1

Y1 - 2005/12/1

N2 - The method of uniform approximation on R2of an arbitrary continuous function f:R2 → X, having the bounded variation in the sense of Hardy, is constructed. In this connection, the estimate of an error in terms of the second order continuity module of a function f, is obtained.

AB - The method of uniform approximation on R2of an arbitrary continuous function f:R2 → X, having the bounded variation in the sense of Hardy, is constructed. In this connection, the estimate of an error in terms of the second order continuity module of a function f, is obtained.

UR - http://www.scopus.com/inward/record.url?scp=33744528874&partnerID=8YFLogxK

M3 - статья

AN - SCOPUS:33744528874

VL - 38

SP - 11

EP - 24

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

SN - 1025-3106

IS - 2

ER -

ID: 50601027