Research output: Contribution to journal › Article › peer-review
On the Transformation of LL(k)-linear to LL(1)-linear Grammars. / Ольховский, Илья Сергеевич; Охотин, Александр Сергеевич.
In: Theory of Computing Systems, Vol. 67, No. 2, 01.04.2023, p. 234-262.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - On the Transformation of LL(k)-linear to LL(1)-linear Grammars
AU - Ольховский, Илья Сергеевич
AU - Охотин, Александр Сергеевич
PY - 2023/4/1
Y1 - 2023/4/1
N2 - It is proved that every LL(k)-linear grammar can be transformed to an equivalent LL(1)-linear grammar. The transformation incurs a blow-up in the number of nonterminal symbols by a factor of m2k−O(1), where m is the size of the alphabet. A close lower bound is established: for certain LL(k)-linear grammars with n nonterminal symbols, every equivalent LL(1)-linear grammar must have at least n⋅ (m− 1) 2k−O(logk) nonterminal symbols.
AB - It is proved that every LL(k)-linear grammar can be transformed to an equivalent LL(1)-linear grammar. The transformation incurs a blow-up in the number of nonterminal symbols by a factor of m2k−O(1), where m is the size of the alphabet. A close lower bound is established: for certain LL(k)-linear grammars with n nonterminal symbols, every equivalent LL(1)-linear grammar must have at least n⋅ (m− 1) 2k−O(logk) nonterminal symbols.
KW - Descriptional complexity
KW - LL grammars
KW - Linear grammars
KW - Parsing
UR - https://www.mendeley.com/catalogue/09467de5-5bb6-35c9-99ec-5b5cef619ac6/
U2 - 10.1007/s00224-022-10108-6
DO - 10.1007/s00224-022-10108-6
M3 - Article
VL - 67
SP - 234
EP - 262
JO - Theory of Computing Systems
JF - Theory of Computing Systems
SN - 1432-4350
IS - 2
ER -
ID: 108695819