Research output: Contribution to journal › Article › peer-review
On the relationship between combinatorial functions and representation theory. / Vershik, A. M.; Tsilevich, N. V.
In: Functional Analysis and its Applications, Vol. 51, No. 1, 01.01.2017, p. 22-31.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - On the relationship between combinatorial functions and representation theory
AU - Vershik, A. M.
AU - Tsilevich, N. V.
PY - 2017/1/1
Y1 - 2017/1/1
N2 - The paper is devoted to the study of well-known combinatorial functions on the symmetric group Sn—the major index maj, the descent number des, and the inversion number inv—from the representation-theoretic point of view. We show that these functions generate the same ideal in the group algebra C[Sn], and the restriction of the left regular representation of the group Sn to this ideal is isomorphic to its representation in the space of n×n skew-symmetric matrices. This allows us to obtain formulas for the functions maj, des, and inv in terms of matrices of an exceptionally simple form. These formulas are applied to find the spectra of the elements under study in the regular representation, as well as derive a series of identities relating these functions to one another and to the number fix of fixed points.
AB - The paper is devoted to the study of well-known combinatorial functions on the symmetric group Sn—the major index maj, the descent number des, and the inversion number inv—from the representation-theoretic point of view. We show that these functions generate the same ideal in the group algebra C[Sn], and the restriction of the left regular representation of the group Sn to this ideal is isomorphic to its representation in the space of n×n skew-symmetric matrices. This allows us to obtain formulas for the functions maj, des, and inv in terms of matrices of an exceptionally simple form. These formulas are applied to find the spectra of the elements under study in the regular representation, as well as derive a series of identities relating these functions to one another and to the number fix of fixed points.
KW - descent number
KW - dual complexity
KW - inversion number
KW - major index
KW - representations of the symmetric group
KW - skew-symmetric matrices
UR - http://www.scopus.com/inward/record.url?scp=85015421144&partnerID=8YFLogxK
U2 - 10.1007/s10688-017-0165-4
DO - 10.1007/s10688-017-0165-4
M3 - Article
AN - SCOPUS:85015421144
VL - 51
SP - 22
EP - 31
JO - Functional Analysis and its Applications
JF - Functional Analysis and its Applications
SN - 0016-2663
IS - 1
ER -
ID: 49789523