Standard

On the largest cave in a random field. / Frolov, A. N.; Martikainen, A. I.

In: Studia Scientiarum Mathematicarum Hungarica, Vol. 37, No. 1-2, 2001, p. 213-223.

Research output: Contribution to journalArticlepeer-review

Harvard

Frolov, AN & Martikainen, AI 2001, 'On the largest cave in a random field', Studia Scientiarum Mathematicarum Hungarica, vol. 37, no. 1-2, pp. 213-223. https://doi.org/10.1556/SScMath.37.2001.1-2.13

APA

Frolov, A. N., & Martikainen, A. I. (2001). On the largest cave in a random field. Studia Scientiarum Mathematicarum Hungarica, 37(1-2), 213-223. https://doi.org/10.1556/SScMath.37.2001.1-2.13

Vancouver

Frolov AN, Martikainen AI. On the largest cave in a random field. Studia Scientiarum Mathematicarum Hungarica. 2001;37(1-2):213-223. https://doi.org/10.1556/SScMath.37.2001.1-2.13

Author

Frolov, A. N. ; Martikainen, A. I. / On the largest cave in a random field. In: Studia Scientiarum Mathematicarum Hungarica. 2001 ; Vol. 37, No. 1-2. pp. 213-223.

BibTeX

@article{d4f7d26dddcb4df480c1d0be0e0a03fc,
title = "On the largest cave in a random field",
abstract = "The asymptotics of the size of the largest cave is found for a d-dimensional field of i.i.d. random variables. For Bernoulli case the problem was investigated by R{\'e}v{\'e}sz ([7], p = 1/2) and Deheuvels [2]. We consider distributions of a general structure.",
keywords = "Almost sure behaviour, Head run, Increasing run, Monotone block, Random field",
author = "Frolov, {A. N.} and Martikainen, {A. I.}",
note = "Copyright: Copyright 2018 Elsevier B.V., All rights reserved.",
year = "2001",
doi = "10.1556/SScMath.37.2001.1-2.13",
language = "English",
volume = "37",
pages = "213--223",
journal = "Studia Scientiarum Mathematicarum Hungarica",
issn = "0081-6906",
publisher = "Akademiai Kiado",
number = "1-2",

}

RIS

TY - JOUR

T1 - On the largest cave in a random field

AU - Frolov, A. N.

AU - Martikainen, A. I.

N1 - Copyright: Copyright 2018 Elsevier B.V., All rights reserved.

PY - 2001

Y1 - 2001

N2 - The asymptotics of the size of the largest cave is found for a d-dimensional field of i.i.d. random variables. For Bernoulli case the problem was investigated by Révész ([7], p = 1/2) and Deheuvels [2]. We consider distributions of a general structure.

AB - The asymptotics of the size of the largest cave is found for a d-dimensional field of i.i.d. random variables. For Bernoulli case the problem was investigated by Révész ([7], p = 1/2) and Deheuvels [2]. We consider distributions of a general structure.

KW - Almost sure behaviour

KW - Head run

KW - Increasing run

KW - Monotone block

KW - Random field

UR - http://www.scopus.com/inward/record.url?scp=0041408496&partnerID=8YFLogxK

U2 - 10.1556/SScMath.37.2001.1-2.13

DO - 10.1556/SScMath.37.2001.1-2.13

M3 - Article

AN - SCOPUS:0041408496

VL - 37

SP - 213

EP - 223

JO - Studia Scientiarum Mathematicarum Hungarica

JF - Studia Scientiarum Mathematicarum Hungarica

SN - 0081-6906

IS - 1-2

ER -

ID: 75021081