Standard

On the homogenization of nonlocal convolution type operators. / Пятницкий, Андрей Львович; Слоущ, Владимир Анатольевич; Суслина, Татьяна Александровна; Жижина, Елена Анатольевна.

In: Russian Journal of Mathematical Physics, Vol. 31, No. 1, 03.2024, p. 137-145.

Research output: Contribution to journalArticlepeer-review

Harvard

Пятницкий, АЛ, Слоущ, ВА, Суслина, ТА & Жижина, ЕА 2024, 'On the homogenization of nonlocal convolution type operators', Russian Journal of Mathematical Physics, vol. 31, no. 1, pp. 137-145. https://doi.org/10.1134/s106192084010114

APA

Пятницкий, А. Л., Слоущ, В. А., Суслина, Т. А., & Жижина, Е. А. (2024). On the homogenization of nonlocal convolution type operators. Russian Journal of Mathematical Physics, 31(1), 137-145. https://doi.org/10.1134/s106192084010114

Vancouver

Пятницкий АЛ, Слоущ ВА, Суслина ТА, Жижина ЕА. On the homogenization of nonlocal convolution type operators. Russian Journal of Mathematical Physics. 2024 Mar;31(1):137-145. https://doi.org/10.1134/s106192084010114

Author

Пятницкий, Андрей Львович ; Слоущ, Владимир Анатольевич ; Суслина, Татьяна Александровна ; Жижина, Елена Анатольевна. / On the homogenization of nonlocal convolution type operators. In: Russian Journal of Mathematical Physics. 2024 ; Vol. 31, No. 1. pp. 137-145.

BibTeX

@article{72706ac0406047b7acb5df4a280fd9cb,
title = "On the homogenization of nonlocal convolution type operators",
abstract = "Abstract: In, we consider a self-adjoint bounded operator,, of the form (Formula presented.) It is assumed that is a nonnegative function such that and ; is -periodic in each variable, and. For small, we obtain an approximation of the resolvent in the operator norm on with an error of order. DOI 10.1134/S106192084010114.",
author = "Пятницкий, {Андрей Львович} and Слоущ, {Владимир Анатольевич} and Суслина, {Татьяна Александровна} and Жижина, {Елена Анатольевна}",
year = "2024",
month = mar,
doi = "10.1134/s106192084010114",
language = "English",
volume = "31",
pages = "137--145",
journal = "Russian Journal of Mathematical Physics",
issn = "1061-9208",
publisher = "МАИК {"}Наука/Интерпериодика{"}",
number = "1",

}

RIS

TY - JOUR

T1 - On the homogenization of nonlocal convolution type operators

AU - Пятницкий, Андрей Львович

AU - Слоущ, Владимир Анатольевич

AU - Суслина, Татьяна Александровна

AU - Жижина, Елена Анатольевна

PY - 2024/3

Y1 - 2024/3

N2 - Abstract: In, we consider a self-adjoint bounded operator,, of the form (Formula presented.) It is assumed that is a nonnegative function such that and ; is -periodic in each variable, and. For small, we obtain an approximation of the resolvent in the operator norm on with an error of order. DOI 10.1134/S106192084010114.

AB - Abstract: In, we consider a self-adjoint bounded operator,, of the form (Formula presented.) It is assumed that is a nonnegative function such that and ; is -periodic in each variable, and. For small, we obtain an approximation of the resolvent in the operator norm on with an error of order. DOI 10.1134/S106192084010114.

UR - https://www.mendeley.com/catalogue/2a50f19c-e3f0-3172-b18b-231eb18292ba/

U2 - 10.1134/s106192084010114

DO - 10.1134/s106192084010114

M3 - Article

VL - 31

SP - 137

EP - 145

JO - Russian Journal of Mathematical Physics

JF - Russian Journal of Mathematical Physics

SN - 1061-9208

IS - 1

ER -

ID: 117831932