Standard

On the Distance to the Nearest Defective Matrix. / Калинина, Елизавета Александровна; Утешев, Алексей Юрьевич; Гончарова, Марина Витальевна; Лежнина, Елена Александровна.

Computer Algebra in Scientific Computing : International Workshop on Computer Algebra in Scientific Computing CASC 2023. 2023. p. 255-271 (Lecture Notes in Computer Science; Vol. 14139).

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Harvard

Калинина, ЕА, Утешев, АЮ, Гончарова, МВ & Лежнина, ЕА 2023, On the Distance to the Nearest Defective Matrix. in Computer Algebra in Scientific Computing : International Workshop on Computer Algebra in Scientific Computing CASC 2023. Lecture Notes in Computer Science, vol. 14139, pp. 255-271, 25th International Workshop on Computer Algebra in Scientific Computing, Havana, Cuba, 28/08/23. https://doi.org/10.1007/978-3-031-41724-5_14

APA

Калинина, Е. А., Утешев, А. Ю., Гончарова, М. В., & Лежнина, Е. А. (2023). On the Distance to the Nearest Defective Matrix. In Computer Algebra in Scientific Computing : International Workshop on Computer Algebra in Scientific Computing CASC 2023 (pp. 255-271). (Lecture Notes in Computer Science; Vol. 14139). https://doi.org/10.1007/978-3-031-41724-5_14

Vancouver

Калинина ЕА, Утешев АЮ, Гончарова МВ, Лежнина ЕА. On the Distance to the Nearest Defective Matrix. In Computer Algebra in Scientific Computing : International Workshop on Computer Algebra in Scientific Computing CASC 2023. 2023. p. 255-271. (Lecture Notes in Computer Science). https://doi.org/10.1007/978-3-031-41724-5_14

Author

Калинина, Елизавета Александровна ; Утешев, Алексей Юрьевич ; Гончарова, Марина Витальевна ; Лежнина, Елена Александровна. / On the Distance to the Nearest Defective Matrix. Computer Algebra in Scientific Computing : International Workshop on Computer Algebra in Scientific Computing CASC 2023. 2023. pp. 255-271 (Lecture Notes in Computer Science).

BibTeX

@inproceedings{b7aa22e6b4974cb2bb6dcc35624f3463,
title = "On the Distance to the Nearest Defective Matrix",
abstract = "The problem of finding the Frobenius distance in the Cn×n matrix space from a given matrix to the set of matrices with multiple eigenvalues is considered. The problem is reduced to the univariate algebraic equation construction via computing the discriminant of an appropriate bivariate polynomial. Several examples are presented including the cases of complex and real matrices.",
keywords = "Complex perturbations, Discriminant, Frobenius norm, Wilkinson{\textquoteright}s problem",
author = "Калинина, {Елизавета Александровна} and Утешев, {Алексей Юрьевич} and Гончарова, {Марина Витальевна} and Лежнина, {Елена Александровна}",
year = "2023",
doi = "10.1007/978-3-031-41724-5_14",
language = "English",
isbn = "978-3-031-41723-8",
series = "Lecture Notes in Computer Science",
publisher = "Springer Nature",
pages = "255--271",
booktitle = "Computer Algebra in Scientific Computing",
note = "25th International Workshop on Computer Algebra in Scientific Computing, CASC 2023 ; Conference date: 28-08-2023 Through 01-09-2023",

}

RIS

TY - GEN

T1 - On the Distance to the Nearest Defective Matrix

AU - Калинина, Елизавета Александровна

AU - Утешев, Алексей Юрьевич

AU - Гончарова, Марина Витальевна

AU - Лежнина, Елена Александровна

PY - 2023

Y1 - 2023

N2 - The problem of finding the Frobenius distance in the Cn×n matrix space from a given matrix to the set of matrices with multiple eigenvalues is considered. The problem is reduced to the univariate algebraic equation construction via computing the discriminant of an appropriate bivariate polynomial. Several examples are presented including the cases of complex and real matrices.

AB - The problem of finding the Frobenius distance in the Cn×n matrix space from a given matrix to the set of matrices with multiple eigenvalues is considered. The problem is reduced to the univariate algebraic equation construction via computing the discriminant of an appropriate bivariate polynomial. Several examples are presented including the cases of complex and real matrices.

KW - Complex perturbations

KW - Discriminant

KW - Frobenius norm

KW - Wilkinson’s problem

UR - https://www.mendeley.com/catalogue/0ae79bcc-3226-322d-b85e-a977d709644e/

U2 - 10.1007/978-3-031-41724-5_14

DO - 10.1007/978-3-031-41724-5_14

M3 - Conference contribution

SN - 978-3-031-41723-8

T3 - Lecture Notes in Computer Science

SP - 255

EP - 271

BT - Computer Algebra in Scientific Computing

T2 - 25th International Workshop on Computer Algebra in Scientific Computing

Y2 - 28 August 2023 through 1 September 2023

ER -

ID: 108207496