Standard

On the crack propagation model in a two-layer material. / Tovstik, P. E.

In: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, No. 1, 2000, p. 138-144.

Research output: Contribution to journalArticlepeer-review

Harvard

Tovstik, PE 2000, 'On the crack propagation model in a two-layer material', Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, no. 1, pp. 138-144.

APA

Tovstik, P. E. (2000). On the crack propagation model in a two-layer material. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, (1), 138-144.

Vancouver

Tovstik PE. On the crack propagation model in a two-layer material. Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. 2000;(1):138-144.

Author

Tovstik, P. E. / On the crack propagation model in a two-layer material. In: Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya. 2000 ; No. 1. pp. 138-144.

BibTeX

@article{0869c009a49d4ee3afe3e0b5b9b9d34c,
title = "On the crack propagation model in a two-layer material",
abstract = "The plane quasi-static problem on the non-linear deformation of a thin elastic layer stuck to an elastic half-space is studied. The half-space and the layer are uniformly compressed in the layer direction. It is assumed that before the deformation there is a crack between the half-space and the layer. The conditions of the crack opening and propagation are found. The problem is solved in one-dimensional formulation approach, in which the layer is modeled by Kirchhoff's plate and the contact forces are assumed to be the given functions of the layer displacement. The crack propagation begins when the displacement attains the prescribed critical value.",
author = "Tovstik, {P. E.}",
year = "2000",
language = "русский",
pages = "138--144",
journal = "ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ",
issn = "1025-3106",
publisher = "Издательство Санкт-Петербургского университета",
number = "1",

}

RIS

TY - JOUR

T1 - On the crack propagation model in a two-layer material

AU - Tovstik, P. E.

PY - 2000

Y1 - 2000

N2 - The plane quasi-static problem on the non-linear deformation of a thin elastic layer stuck to an elastic half-space is studied. The half-space and the layer are uniformly compressed in the layer direction. It is assumed that before the deformation there is a crack between the half-space and the layer. The conditions of the crack opening and propagation are found. The problem is solved in one-dimensional formulation approach, in which the layer is modeled by Kirchhoff's plate and the contact forces are assumed to be the given functions of the layer displacement. The crack propagation begins when the displacement attains the prescribed critical value.

AB - The plane quasi-static problem on the non-linear deformation of a thin elastic layer stuck to an elastic half-space is studied. The half-space and the layer are uniformly compressed in the layer direction. It is assumed that before the deformation there is a crack between the half-space and the layer. The conditions of the crack opening and propagation are found. The problem is solved in one-dimensional formulation approach, in which the layer is modeled by Kirchhoff's plate and the contact forces are assumed to be the given functions of the layer displacement. The crack propagation begins when the displacement attains the prescribed critical value.

UR - http://www.scopus.com/inward/record.url?scp=0034588127&partnerID=8YFLogxK

M3 - статья

AN - SCOPUS:0034588127

SP - 138

EP - 144

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

SN - 1025-3106

IS - 1

ER -

ID: 9286512