Standard

On the Congruence of Twice a Prime. / Лурье, Б.Б.; Порецкий, А.М.

In: Journal of Mathematical Sciences (United States), Vol. 243, No. 4, 01.12.2019, p. 595-600.

Research output: Contribution to journalArticlepeer-review

Harvard

Лурье, ББ & Порецкий, АМ 2019, 'On the Congruence of Twice a Prime', Journal of Mathematical Sciences (United States), vol. 243, no. 4, pp. 595-600. https://doi.org/10.1007/s10958-019-04560-y

APA

Vancouver

Лурье ББ, Порецкий АМ. On the Congruence of Twice a Prime. Journal of Mathematical Sciences (United States). 2019 Dec 1;243(4):595-600. https://doi.org/10.1007/s10958-019-04560-y

Author

Лурье, Б.Б. ; Порецкий, А.М. / On the Congruence of Twice a Prime. In: Journal of Mathematical Sciences (United States). 2019 ; Vol. 243, No. 4. pp. 595-600.

BibTeX

@article{b460f7be0ca74923bb8fdd9a5414da5f,
title = "On the Congruence of Twice a Prime",
abstract = "It is shown that if p is a prime equal to 5 modulo 8, then 2p cannot be a congruent number. It is also proved that if p is a prime equal to 1 modulo 8, then 2p can be congruent only if p ≡ 1 (mod 16).",
author = "Б.Б. Лурье and А.М. Порецкий",
year = "2019",
month = dec,
day = "1",
doi = "10.1007/s10958-019-04560-y",
language = "English",
volume = "243",
pages = "595--600",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "4",

}

RIS

TY - JOUR

T1 - On the Congruence of Twice a Prime

AU - Лурье, Б.Б.

AU - Порецкий, А.М.

PY - 2019/12/1

Y1 - 2019/12/1

N2 - It is shown that if p is a prime equal to 5 modulo 8, then 2p cannot be a congruent number. It is also proved that if p is a prime equal to 1 modulo 8, then 2p can be congruent only if p ≡ 1 (mod 16).

AB - It is shown that if p is a prime equal to 5 modulo 8, then 2p cannot be a congruent number. It is also proved that if p is a prime equal to 1 modulo 8, then 2p can be congruent only if p ≡ 1 (mod 16).

UR - http://www.scopus.com/inward/record.url?scp=85074500356&partnerID=8YFLogxK

U2 - 10.1007/s10958-019-04560-y

DO - 10.1007/s10958-019-04560-y

M3 - Article

AN - SCOPUS:85074500356

VL - 243

SP - 595

EP - 600

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 4

ER -

ID: 51916914