Standard

On tensor invariants for integrable cases of Euler, Lagrange and Kovalevskaya rigid body motion. / Цыганов, Андрей Владимирович.

In: Izvestiya Mathematics, Vol. 89, No. 2, 2025, p. 372-398.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

BibTeX

@article{5fbaa8cecbf34787b37d29306144ff58,
title = "On tensor invariants for integrable cases of Euler, Lagrange and Kovalevskaya rigid body motion",
abstract = "We discuss global tensor invariants of a rigid body motion in the cases of Euler, Lagrange and Kovalevskaya. These invariants are obtained by substituting tensor fields with components cubic in the variables into the invariance equation and solving the resulting algebraic equations using computer algebra systems.",
author = "Цыганов, {Андрей Владимирович}",
year = "2025",
doi = "10.4213/im9618e",
language = "English",
volume = "89",
pages = "372--398",
journal = "Izvestiya Mathematics",
issn = "1064-5632",
publisher = "IOP Publishing Ltd.",
number = "2",

}

RIS

TY - JOUR

T1 - On tensor invariants for integrable cases of Euler, Lagrange and Kovalevskaya rigid body motion

AU - Цыганов, Андрей Владимирович

PY - 2025

Y1 - 2025

N2 - We discuss global tensor invariants of a rigid body motion in the cases of Euler, Lagrange and Kovalevskaya. These invariants are obtained by substituting tensor fields with components cubic in the variables into the invariance equation and solving the resulting algebraic equations using computer algebra systems.

AB - We discuss global tensor invariants of a rigid body motion in the cases of Euler, Lagrange and Kovalevskaya. These invariants are obtained by substituting tensor fields with components cubic in the variables into the invariance equation and solving the resulting algebraic equations using computer algebra systems.

UR - https://www.mendeley.com/catalogue/5194bb72-aa5b-357f-aba6-36cd9daf3542/

U2 - 10.4213/im9618e

DO - 10.4213/im9618e

M3 - Article

VL - 89

SP - 372

EP - 398

JO - Izvestiya Mathematics

JF - Izvestiya Mathematics

SN - 1064-5632

IS - 2

ER -

ID: 135471321