Standard

On superintegrable systems separable in Cartesian coordinates. / Tsiganov, A. V.; Григорьев, Юрий Александрович.

In: Physics Letters, Section A: General, Atomic and Solid State Physics, Vol. 382, No. 32, 17.08.2018, p. 2092-2096.

Research output: Contribution to journalArticlepeer-review

Harvard

Tsiganov, AV & Григорьев, ЮА 2018, 'On superintegrable systems separable in Cartesian coordinates', Physics Letters, Section A: General, Atomic and Solid State Physics, vol. 382, no. 32, pp. 2092-2096. https://doi.org/10.1016/j.physleta.2018.05.039

APA

Vancouver

Tsiganov AV, Григорьев ЮА. On superintegrable systems separable in Cartesian coordinates. Physics Letters, Section A: General, Atomic and Solid State Physics. 2018 Aug 17;382(32):2092-2096. https://doi.org/10.1016/j.physleta.2018.05.039

Author

Tsiganov, A. V. ; Григорьев, Юрий Александрович. / On superintegrable systems separable in Cartesian coordinates. In: Physics Letters, Section A: General, Atomic and Solid State Physics. 2018 ; Vol. 382, No. 32. pp. 2092-2096.

BibTeX

@article{c9d3440c78614391a6c8de789bb69be3,
title = "On superintegrable systems separable in Cartesian coordinates",
abstract = "We continue the study of superintegrable systems of Thompson's type separable in Cartesian coordinates. An additional integral of motion for these systems is the polynomial in momenta of N-th order which is a linear function of angle variables and the polynomial in action variables. Existence of such superintegrable systems is naturally related to the famous Chebyshev theorem on binomial differentials. (C) 2018 Elsevier B.V. All rights reserved.",
keywords = "Fokas–Lagersrom system, Higher order integrals of motion, Superintegrable systems, INTEGRALS, CONSTRUCTION, Fokas-Lagersrom system, HAMILTONIANS",
author = "Tsiganov, {A. V.} and Григорьев, {Юрий Александрович}",
year = "2018",
month = aug,
day = "17",
doi = "10.1016/j.physleta.2018.05.039",
language = "English",
volume = "382",
pages = "2092--2096",
journal = "Physics Letters A",
issn = "0375-9601",
publisher = "Elsevier",
number = "32",

}

RIS

TY - JOUR

T1 - On superintegrable systems separable in Cartesian coordinates

AU - Tsiganov, A. V.

AU - Григорьев, Юрий Александрович

PY - 2018/8/17

Y1 - 2018/8/17

N2 - We continue the study of superintegrable systems of Thompson's type separable in Cartesian coordinates. An additional integral of motion for these systems is the polynomial in momenta of N-th order which is a linear function of angle variables and the polynomial in action variables. Existence of such superintegrable systems is naturally related to the famous Chebyshev theorem on binomial differentials. (C) 2018 Elsevier B.V. All rights reserved.

AB - We continue the study of superintegrable systems of Thompson's type separable in Cartesian coordinates. An additional integral of motion for these systems is the polynomial in momenta of N-th order which is a linear function of angle variables and the polynomial in action variables. Existence of such superintegrable systems is naturally related to the famous Chebyshev theorem on binomial differentials. (C) 2018 Elsevier B.V. All rights reserved.

KW - Fokas–Lagersrom system

KW - Higher order integrals of motion

KW - Superintegrable systems

KW - INTEGRALS

KW - CONSTRUCTION

KW - Fokas-Lagersrom system

KW - HAMILTONIANS

UR - http://www.scopus.com/inward/record.url?scp=85047828482&partnerID=8YFLogxK

U2 - 10.1016/j.physleta.2018.05.039

DO - 10.1016/j.physleta.2018.05.039

M3 - Article

AN - SCOPUS:85047828482

VL - 382

SP - 2092

EP - 2096

JO - Physics Letters A

JF - Physics Letters A

SN - 0375-9601

IS - 32

ER -

ID: 28190442