Research output: Contribution to journal › Article › peer-review
On superintegrable systems separable in Cartesian coordinates. / Tsiganov, A. V.; Григорьев, Юрий Александрович.
In: Physics Letters, Section A: General, Atomic and Solid State Physics, Vol. 382, No. 32, 17.08.2018, p. 2092-2096.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - On superintegrable systems separable in Cartesian coordinates
AU - Tsiganov, A. V.
AU - Григорьев, Юрий Александрович
PY - 2018/8/17
Y1 - 2018/8/17
N2 - We continue the study of superintegrable systems of Thompson's type separable in Cartesian coordinates. An additional integral of motion for these systems is the polynomial in momenta of N-th order which is a linear function of angle variables and the polynomial in action variables. Existence of such superintegrable systems is naturally related to the famous Chebyshev theorem on binomial differentials. (C) 2018 Elsevier B.V. All rights reserved.
AB - We continue the study of superintegrable systems of Thompson's type separable in Cartesian coordinates. An additional integral of motion for these systems is the polynomial in momenta of N-th order which is a linear function of angle variables and the polynomial in action variables. Existence of such superintegrable systems is naturally related to the famous Chebyshev theorem on binomial differentials. (C) 2018 Elsevier B.V. All rights reserved.
KW - Fokas–Lagersrom system
KW - Higher order integrals of motion
KW - Superintegrable systems
KW - INTEGRALS
KW - CONSTRUCTION
KW - Fokas-Lagersrom system
KW - HAMILTONIANS
UR - http://www.scopus.com/inward/record.url?scp=85047828482&partnerID=8YFLogxK
U2 - 10.1016/j.physleta.2018.05.039
DO - 10.1016/j.physleta.2018.05.039
M3 - Article
AN - SCOPUS:85047828482
VL - 382
SP - 2092
EP - 2096
JO - Physics Letters A
JF - Physics Letters A
SN - 0375-9601
IS - 32
ER -
ID: 28190442