Standard

On summation of nonharmonic Fourier series. / Белов, Юрий Сергеевич; Lyubarskii, Yurii.

In: Constructive Approximation, Vol. 43, No. 2, 12.2016, p. 291-309.

Research output: Contribution to journalArticlepeer-review

Harvard

Белов, ЮС & Lyubarskii, Y 2016, 'On summation of nonharmonic Fourier series.', Constructive Approximation, vol. 43, no. 2, pp. 291-309.

APA

Белов, Ю. С., & Lyubarskii, Y. (2016). On summation of nonharmonic Fourier series. Constructive Approximation, 43(2), 291-309.

Vancouver

Белов ЮС, Lyubarskii Y. On summation of nonharmonic Fourier series. Constructive Approximation. 2016 Dec;43(2):291-309.

Author

Белов, Юрий Сергеевич ; Lyubarskii, Yurii. / On summation of nonharmonic Fourier series. In: Constructive Approximation. 2016 ; Vol. 43, No. 2. pp. 291-309.

BibTeX

@article{717bc4e688b740bda63114eebaec591a,
title = "On summation of nonharmonic Fourier series.",
abstract = "Let a sequence \Lambda \subset {\mathbb {C}} be such that the corresponding system of exponential functions {\mathcal {E}}(\Lambda ):=\left\{ {\text {e}}^{i\lambda t}\right\} _{\lambda \in \Lambda } is complete and minimal in L^2(-\pi ,\pi ), and thus each function f\in L^2(-\pi ,\pi ) corresponds to a nonharmonic Fourier series in {\mathcal {E}}(\Lambda ). We prove that if the generating function G of \Lambda satisfies the Muckenhoupt (A_2) condition on {\mathbb {R}}, then this series admits a linear summation method. Recent results show that the (A_2) condition cannot be omitted.",
author = "Белов, {Юрий Сергеевич} and Yurii Lyubarskii",
year = "2016",
month = dec,
language = "English",
volume = "43",
pages = "291--309",
journal = "Constructive Approximation",
issn = "0176-4276",
publisher = "Springer Nature",
number = "2",

}

RIS

TY - JOUR

T1 - On summation of nonharmonic Fourier series.

AU - Белов, Юрий Сергеевич

AU - Lyubarskii, Yurii

PY - 2016/12

Y1 - 2016/12

N2 - Let a sequence \Lambda \subset {\mathbb {C}} be such that the corresponding system of exponential functions {\mathcal {E}}(\Lambda ):=\left\{ {\text {e}}^{i\lambda t}\right\} _{\lambda \in \Lambda } is complete and minimal in L^2(-\pi ,\pi ), and thus each function f\in L^2(-\pi ,\pi ) corresponds to a nonharmonic Fourier series in {\mathcal {E}}(\Lambda ). We prove that if the generating function G of \Lambda satisfies the Muckenhoupt (A_2) condition on {\mathbb {R}}, then this series admits a linear summation method. Recent results show that the (A_2) condition cannot be omitted.

AB - Let a sequence \Lambda \subset {\mathbb {C}} be such that the corresponding system of exponential functions {\mathcal {E}}(\Lambda ):=\left\{ {\text {e}}^{i\lambda t}\right\} _{\lambda \in \Lambda } is complete and minimal in L^2(-\pi ,\pi ), and thus each function f\in L^2(-\pi ,\pi ) corresponds to a nonharmonic Fourier series in {\mathcal {E}}(\Lambda ). We prove that if the generating function G of \Lambda satisfies the Muckenhoupt (A_2) condition on {\mathbb {R}}, then this series admits a linear summation method. Recent results show that the (A_2) condition cannot be omitted.

M3 - Article

VL - 43

SP - 291

EP - 309

JO - Constructive Approximation

JF - Constructive Approximation

SN - 0176-4276

IS - 2

ER -

ID: 9452843