Research output: Contribution to journal › Article › peer-review
On string functions and double-sum formulas. / Mortenson, Eric T.; Постнова, Ольга Викторовна; Соловьёв, Дмитрий Павлович.
In: Research in the Mathematical Sciences, Vol. 10, 15, 2023.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - On string functions and double-sum formulas
AU - Mortenson, Eric T.
AU - Постнова, Ольга Викторовна
AU - Соловьёв, Дмитрий Павлович
PY - 2023
Y1 - 2023
N2 - String functions are important building blocks of characters of integrable highest modules over affine Kac-Moody algebras. Kac and Peterson computed string functions for affine Lie algebras of type A_1^1 in terms of Dedekind eta functions. We produce new relations between string functions by writing them as double-sums and then using certain symmetry relations. We evaluate the series using special double-sum formulas that express Hecke-type double-sums in terms of Appell-Lerch functions and theta functions, where we point out that Appell-Lerch functions are the building blocks of Ramanujan's classical mock theta functions.
AB - String functions are important building blocks of characters of integrable highest modules over affine Kac-Moody algebras. Kac and Peterson computed string functions for affine Lie algebras of type A_1^1 in terms of Dedekind eta functions. We produce new relations between string functions by writing them as double-sums and then using certain symmetry relations. We evaluate the series using special double-sum formulas that express Hecke-type double-sums in terms of Appell-Lerch functions and theta functions, where we point out that Appell-Lerch functions are the building blocks of Ramanujan's classical mock theta functions.
U2 - 10.1007/s40687-023-00379-x
DO - 10.1007/s40687-023-00379-x
M3 - Article
VL - 10
JO - Research in the Mathematical Sciences
JF - Research in the Mathematical Sciences
SN - 2522-0144
M1 - 15
ER -
ID: 126318058