Research output: Contribution to journal › Article › peer-review
On Small Deviation Asymptotics in $L_2$ of Some Mixed Gaussian Processes. / Назаров, Александр Ильич; Никитин, Яков Юрьевич.
In: Mathematics, Vol. 6, No. 4, 55, 04.2018.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - On Small Deviation Asymptotics in $L_2$ of Some Mixed Gaussian Processes
AU - Назаров, Александр Ильич
AU - Никитин, Яков Юрьевич
PY - 2018/4
Y1 - 2018/4
N2 - We study the exact small deviation asymptotics with respect to the Hilbert norm for some mixed Gaussian processes. The simplest example here is the linear combination of theWiener process and the Brownian bridge.We get the precise final result in this case and in some examples of more complicated processes of similar structure. The proof is based on Karhunen-Loève expansion together with spectral asymptotics of differential operators and complex analysis methods.
AB - We study the exact small deviation asymptotics with respect to the Hilbert norm for some mixed Gaussian processes. The simplest example here is the linear combination of theWiener process and the Brownian bridge.We get the precise final result in this case and in some examples of more complicated processes of similar structure. The proof is based on Karhunen-Loève expansion together with spectral asymptotics of differential operators and complex analysis methods.
KW - дробное броуновское движение
KW - гильбертова норма
KW - малые уклонения случайных процессов
KW - Mixed Gaussian process
KW - Exact asymptotics
KW - Small deviations
KW - small deviations
KW - FRACTIONAL BROWNIAN-MOTION
KW - BOUNDARY-VALUE-PROBLEMS
KW - RESPECT
KW - exact asymptotics
KW - NORM
KW - FUNCTIONAL-INTEGRALS
KW - mixed Gaussian process
UR - http://www.scopus.com/inward/record.url?scp=85045104621&partnerID=8YFLogxK
UR - http://www.mendeley.com/research/small-deviation-asymptotics-linf2infof-some-mixed-gaussian-processes
U2 - 10.3390/math6040055
DO - 10.3390/math6040055
M3 - Article
VL - 6
JO - Mathematics
JF - Mathematics
SN - 2227-7390
IS - 4
M1 - 55
ER -
ID: 18082952