Research output: Contribution to journal › Article › peer-review
Recently, S. Grivaux showed that there exists a rank one perturbation of a unitary operator in a Hilbert space which is hypercyclic. Another construction was suggested later by the first and the third authors. Here, using a functional model for rank one perturbations of singular unitary operators, we give yet another construction of hypercyclic rank one perturbation of a unitary operator. In particular, we show that any countable union of perfect Carleson sets on the circle can be the spectrum of a perturbed (hypercyclic) operator.
Original language | English |
---|---|
Pages (from-to) | 961-968 |
Number of pages | 8 |
Journal | Mathematische Nachrichten |
Volume | 292 |
Issue number | 5 |
DOIs | |
State | Published - 1 May 2019 |
ID: 42618729