Standard

On Homotopy Invariants of Finite Degree. / Podkorytov, S. S.

In: Journal of Mathematical Sciences (United States), Vol. 212, No. 5, 01.02.2016, p. 587-604.

Research output: Contribution to journalArticlepeer-review

Harvard

Podkorytov, SS 2016, 'On Homotopy Invariants of Finite Degree', Journal of Mathematical Sciences (United States), vol. 212, no. 5, pp. 587-604. https://doi.org/10.1007/s10958-016-2692-6

APA

Podkorytov, S. S. (2016). On Homotopy Invariants of Finite Degree. Journal of Mathematical Sciences (United States), 212(5), 587-604. https://doi.org/10.1007/s10958-016-2692-6

Vancouver

Podkorytov SS. On Homotopy Invariants of Finite Degree. Journal of Mathematical Sciences (United States). 2016 Feb 1;212(5):587-604. https://doi.org/10.1007/s10958-016-2692-6

Author

Podkorytov, S. S. / On Homotopy Invariants of Finite Degree. In: Journal of Mathematical Sciences (United States). 2016 ; Vol. 212, No. 5. pp. 587-604.

BibTeX

@article{2d1962d8ba4c42b3908c9a7f68d0ec41,
title = "On Homotopy Invariants of Finite Degree",
abstract = "We prove that homotopy invariants of finite degree distinguish homotopy classes of maps of a connected compact CW-complex to a nilpotent connected CW-complex with finitely generated homotopy groups. Bibliography: 12 titles.",
keywords = "Abelian Group, Commutative Diagram, Homotopy class, Homotopy group, Homotopy Invariant",
author = "Podkorytov, {S. S.}",
note = "Podkorytov, S.S. On Homotopy Invariants of Finite Degree. J Math Sci 212, 587–604 (2016). https://doi.org/10.1007/s10958-016-2692-6",
year = "2016",
month = feb,
day = "1",
doi = "10.1007/s10958-016-2692-6",
language = "English",
volume = "212",
pages = "587--604",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "5",

}

RIS

TY - JOUR

T1 - On Homotopy Invariants of Finite Degree

AU - Podkorytov, S. S.

N1 - Podkorytov, S.S. On Homotopy Invariants of Finite Degree. J Math Sci 212, 587–604 (2016). https://doi.org/10.1007/s10958-016-2692-6

PY - 2016/2/1

Y1 - 2016/2/1

N2 - We prove that homotopy invariants of finite degree distinguish homotopy classes of maps of a connected compact CW-complex to a nilpotent connected CW-complex with finitely generated homotopy groups. Bibliography: 12 titles.

AB - We prove that homotopy invariants of finite degree distinguish homotopy classes of maps of a connected compact CW-complex to a nilpotent connected CW-complex with finitely generated homotopy groups. Bibliography: 12 titles.

KW - Abelian Group

KW - Commutative Diagram

KW - Homotopy class

KW - Homotopy group

KW - Homotopy Invariant

UR - http://www.scopus.com/inward/record.url?scp=84953327105&partnerID=8YFLogxK

U2 - 10.1007/s10958-016-2692-6

DO - 10.1007/s10958-016-2692-6

M3 - Article

AN - SCOPUS:84953327105

VL - 212

SP - 587

EP - 604

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 5

ER -

ID: 49886213