Standard

ON EMBEDDINGS OF FINITE METRIC SPACES IN l^n_∞. / Petrov, F. V.; Stolyarov, D. M.; Zatitskiy, P. B.

In: Mathematika, Vol. 56, No. 1, 2010, p. 135-139.

Research output: Contribution to journalArticle

Harvard

Petrov, FV, Stolyarov, DM & Zatitskiy, PB 2010, 'ON EMBEDDINGS OF FINITE METRIC SPACES IN l^n_∞', Mathematika, vol. 56, no. 1, pp. 135-139. <http://journals.cambridge.org/abstract_S002557930900045X>

APA

Vancouver

Petrov FV, Stolyarov DM, Zatitskiy PB. ON EMBEDDINGS OF FINITE METRIC SPACES IN l^n_∞. Mathematika. 2010;56(1):135-139.

Author

Petrov, F. V. ; Stolyarov, D. M. ; Zatitskiy, P. B. / ON EMBEDDINGS OF FINITE METRIC SPACES IN l^n_∞. In: Mathematika. 2010 ; Vol. 56, No. 1. pp. 135-139.

BibTeX

@article{38a9eec58d194e968f22aa6216e1a8d1,
title = "ON EMBEDDINGS OF FINITE METRIC SPACES IN l^n_∞",
abstract = "We prove that for any given integer c≥0 any metric space on n points may be isometrically embedded into l^{n−c}_∞ provided n is large enough.",
author = "Petrov, {F. V.} and Stolyarov, {D. M.} and Zatitskiy, {P. B.}",
year = "2010",
language = "не определен",
volume = "56",
pages = "135--139",
journal = "Mathematika",
issn = "0025-5793",
publisher = "Cambridge University Press",
number = "1",

}

RIS

TY - JOUR

T1 - ON EMBEDDINGS OF FINITE METRIC SPACES IN l^n_∞

AU - Petrov, F. V.

AU - Stolyarov, D. M.

AU - Zatitskiy, P. B.

PY - 2010

Y1 - 2010

N2 - We prove that for any given integer c≥0 any metric space on n points may be isometrically embedded into l^{n−c}_∞ provided n is large enough.

AB - We prove that for any given integer c≥0 any metric space on n points may be isometrically embedded into l^{n−c}_∞ provided n is large enough.

M3 - статья

VL - 56

SP - 135

EP - 139

JO - Mathematika

JF - Mathematika

SN - 0025-5793

IS - 1

ER -

ID: 5222598