Standard

On Definition of Quantum Tomography via the Sobolev Embedding Theorem. / Amosov, G. G.; Korennoy, Ya A.

In: Lobachevskii Journal of Mathematics, Vol. 40, No. 10, 01.10.2019, p. 1433-1439.

Research output: Contribution to journalArticlepeer-review

Harvard

Amosov, GG & Korennoy, YA 2019, 'On Definition of Quantum Tomography via the Sobolev Embedding Theorem', Lobachevskii Journal of Mathematics, vol. 40, no. 10, pp. 1433-1439. https://doi.org/10.1134/S1995080219100044

APA

Amosov, G. G., & Korennoy, Y. A. (2019). On Definition of Quantum Tomography via the Sobolev Embedding Theorem. Lobachevskii Journal of Mathematics, 40(10), 1433-1439. https://doi.org/10.1134/S1995080219100044

Vancouver

Amosov GG, Korennoy YA. On Definition of Quantum Tomography via the Sobolev Embedding Theorem. Lobachevskii Journal of Mathematics. 2019 Oct 1;40(10):1433-1439. https://doi.org/10.1134/S1995080219100044

Author

Amosov, G. G. ; Korennoy, Ya A. / On Definition of Quantum Tomography via the Sobolev Embedding Theorem. In: Lobachevskii Journal of Mathematics. 2019 ; Vol. 40, No. 10. pp. 1433-1439.

BibTeX

@article{23ee13879f7f44079f2bbaa897847784,
title = "On Definition of Quantum Tomography via the Sobolev Embedding Theorem",
abstract = "We obtain sufficient conditions on kernels of quantum states under which Wigner functions, optical quantum tomograms and linking their formulas are correctly defined. Our approach is based upon the Sobolev Embedding theorem. The transition probability formula and the fractional Fourier transform are discussed in this framework.",
keywords = "optical tomogram, partial Fourier transform, quantum tomography, Radon transform, Sobolev embedding theorem, Wigner function",
author = "Amosov, {G. G.} and Korennoy, {Ya A.}",
note = "Publisher Copyright: {\textcopyright} 2019, Pleiades Publishing, Ltd. Copyright: Copyright 2019 Elsevier B.V., All rights reserved.",
year = "2019",
month = oct,
day = "1",
doi = "10.1134/S1995080219100044",
language = "English",
volume = "40",
pages = "1433--1439",
journal = "Lobachevskii Journal of Mathematics",
issn = "1995-0802",
publisher = "Pleiades Publishing",
number = "10",

}

RIS

TY - JOUR

T1 - On Definition of Quantum Tomography via the Sobolev Embedding Theorem

AU - Amosov, G. G.

AU - Korennoy, Ya A.

N1 - Publisher Copyright: © 2019, Pleiades Publishing, Ltd. Copyright: Copyright 2019 Elsevier B.V., All rights reserved.

PY - 2019/10/1

Y1 - 2019/10/1

N2 - We obtain sufficient conditions on kernels of quantum states under which Wigner functions, optical quantum tomograms and linking their formulas are correctly defined. Our approach is based upon the Sobolev Embedding theorem. The transition probability formula and the fractional Fourier transform are discussed in this framework.

AB - We obtain sufficient conditions on kernels of quantum states under which Wigner functions, optical quantum tomograms and linking their formulas are correctly defined. Our approach is based upon the Sobolev Embedding theorem. The transition probability formula and the fractional Fourier transform are discussed in this framework.

KW - optical tomogram

KW - partial Fourier transform

KW - quantum tomography

KW - Radon transform

KW - Sobolev embedding theorem

KW - Wigner function

UR - http://www.scopus.com/inward/record.url?scp=85073443290&partnerID=8YFLogxK

U2 - 10.1134/S1995080219100044

DO - 10.1134/S1995080219100044

M3 - Article

AN - SCOPUS:85073443290

VL - 40

SP - 1433

EP - 1439

JO - Lobachevskii Journal of Mathematics

JF - Lobachevskii Journal of Mathematics

SN - 1995-0802

IS - 10

ER -

ID: 75034284