Research output: Contribution to journal › Article › peer-review
On Definition of Quantum Tomography via the Sobolev Embedding Theorem. / Amosov, G. G.; Korennoy, Ya A.
In: Lobachevskii Journal of Mathematics, Vol. 40, No. 10, 01.10.2019, p. 1433-1439.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - On Definition of Quantum Tomography via the Sobolev Embedding Theorem
AU - Amosov, G. G.
AU - Korennoy, Ya A.
N1 - Publisher Copyright: © 2019, Pleiades Publishing, Ltd. Copyright: Copyright 2019 Elsevier B.V., All rights reserved.
PY - 2019/10/1
Y1 - 2019/10/1
N2 - We obtain sufficient conditions on kernels of quantum states under which Wigner functions, optical quantum tomograms and linking their formulas are correctly defined. Our approach is based upon the Sobolev Embedding theorem. The transition probability formula and the fractional Fourier transform are discussed in this framework.
AB - We obtain sufficient conditions on kernels of quantum states under which Wigner functions, optical quantum tomograms and linking their formulas are correctly defined. Our approach is based upon the Sobolev Embedding theorem. The transition probability formula and the fractional Fourier transform are discussed in this framework.
KW - optical tomogram
KW - partial Fourier transform
KW - quantum tomography
KW - Radon transform
KW - Sobolev embedding theorem
KW - Wigner function
UR - http://www.scopus.com/inward/record.url?scp=85073443290&partnerID=8YFLogxK
U2 - 10.1134/S1995080219100044
DO - 10.1134/S1995080219100044
M3 - Article
AN - SCOPUS:85073443290
VL - 40
SP - 1433
EP - 1439
JO - Lobachevskii Journal of Mathematics
JF - Lobachevskii Journal of Mathematics
SN - 1995-0802
IS - 10
ER -
ID: 75034284