Standard

On bi-Hamiltonian geometry of the Lagrange top. / Tsiganov, A. V.

In: Journal of Physics A: Mathematical and Theoretical, Vol. 41, No. 31, 315212, 08.08.2008.

Research output: Contribution to journalArticlepeer-review

Harvard

Tsiganov, AV 2008, 'On bi-Hamiltonian geometry of the Lagrange top', Journal of Physics A: Mathematical and Theoretical, vol. 41, no. 31, 315212. https://doi.org/10.1088/1751-8113/41/31/315212

APA

Tsiganov, A. V. (2008). On bi-Hamiltonian geometry of the Lagrange top. Journal of Physics A: Mathematical and Theoretical, 41(31), [315212]. https://doi.org/10.1088/1751-8113/41/31/315212

Vancouver

Tsiganov AV. On bi-Hamiltonian geometry of the Lagrange top. Journal of Physics A: Mathematical and Theoretical. 2008 Aug 8;41(31). 315212. https://doi.org/10.1088/1751-8113/41/31/315212

Author

Tsiganov, A. V. / On bi-Hamiltonian geometry of the Lagrange top. In: Journal of Physics A: Mathematical and Theoretical. 2008 ; Vol. 41, No. 31.

BibTeX

@article{71b59ce860964dcaa480b8cf36ef038b,
title = "On bi-Hamiltonian geometry of the Lagrange top",
abstract = "We consider three different incompatible bi-Hamiltonian structures for the Lagrange top, which have the same foliation by symplectic leaves. These bivectors may be associated with different 2-coboundaries in the Poisson-Lichnerowicz cohomology defined by canonical bivector on e*(3).",
author = "Tsiganov, {A. V.}",
year = "2008",
month = aug,
day = "8",
doi = "10.1088/1751-8113/41/31/315212",
language = "English",
volume = "41",
journal = "Journal of Physics A: Mathematical and Theoretical",
issn = "1751-8113",
publisher = "IOP Publishing Ltd.",
number = "31",

}

RIS

TY - JOUR

T1 - On bi-Hamiltonian geometry of the Lagrange top

AU - Tsiganov, A. V.

PY - 2008/8/8

Y1 - 2008/8/8

N2 - We consider three different incompatible bi-Hamiltonian structures for the Lagrange top, which have the same foliation by symplectic leaves. These bivectors may be associated with different 2-coboundaries in the Poisson-Lichnerowicz cohomology defined by canonical bivector on e*(3).

AB - We consider three different incompatible bi-Hamiltonian structures for the Lagrange top, which have the same foliation by symplectic leaves. These bivectors may be associated with different 2-coboundaries in the Poisson-Lichnerowicz cohomology defined by canonical bivector on e*(3).

UR - http://www.scopus.com/inward/record.url?scp=48849084148&partnerID=8YFLogxK

U2 - 10.1088/1751-8113/41/31/315212

DO - 10.1088/1751-8113/41/31/315212

M3 - Article

AN - SCOPUS:48849084148

VL - 41

JO - Journal of Physics A: Mathematical and Theoretical

JF - Journal of Physics A: Mathematical and Theoretical

SN - 1751-8113

IS - 31

M1 - 315212

ER -

ID: 8484380