The aim of the present work is to show that our recent results on the approximation of distributions of sums of independent summands by the infinitely divisible laws on convex polyhedra can be obtained via an alternative class of approximating infinitely divisible distributions. We will also generalize the results to the infinite-dimensional case.

Translated title of the contributionОб альтернативных аппроксимирующих распределениях в многомерном варианте второй равномерной предельной теоремы Колмогорова
Original languageEnglish
Pages (from-to)1-16
Number of pages16
JournalTheory of Probability and its Applications
Volume67
Issue number1
DOIs
StatePublished - 2022

    Research areas

  • convex polyhedral, infiniteldivisible approximation, Kolmogorov’s uniform limit theorem, multidimensional distribution

    Scopus subject areas

  • Statistics and Probability
  • Statistics, Probability and Uncertainty

ID: 100911356