Research output: Contribution to journal › Article › peer-review
Observations of local electron states on the edges of the circular pits on hydrogen-etched graphite surface by scanning tunneling spectroscopy. / Klusek, Z.; Waqar, Z.; Denisov, E. A.; Kompaniets, T. N.; Makarenko, I. V.; Titkov, A. N.; Bhatti, A. S.
In: Applied Surface Science, Vol. 161, No. 3, 02.07.2000, p. 508-514.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Observations of local electron states on the edges of the circular pits on hydrogen-etched graphite surface by scanning tunneling spectroscopy
AU - Klusek, Z.
AU - Waqar, Z.
AU - Denisov, E. A.
AU - Kompaniets, T. N.
AU - Makarenko, I. V.
AU - Titkov, A. N.
AU - Bhatti, A. S.
PY - 2000/7/2
Y1 - 2000/7/2
N2 - Scanning tunneling microscopy (STM) and spectroscopy (STS) are used to study electronic states at the edges of the circular pits on the hydrogen-etched graphite surface. The edge surface state revealed by tunneling spectroscopy appears as the maximum of the local density of states (LDOS) in the energy range of 90-250 meV above the Fermi level. The dispersion of the energy state is explained by the band broadening in AB stacked H-terminated graphite. The magnitude of the edge state decreases with the distance from the pit edge as theoretically predicted.
AB - Scanning tunneling microscopy (STM) and spectroscopy (STS) are used to study electronic states at the edges of the circular pits on the hydrogen-etched graphite surface. The edge surface state revealed by tunneling spectroscopy appears as the maximum of the local density of states (LDOS) in the energy range of 90-250 meV above the Fermi level. The dispersion of the energy state is explained by the band broadening in AB stacked H-terminated graphite. The magnitude of the edge state decreases with the distance from the pit edge as theoretically predicted.
UR - http://www.scopus.com/inward/record.url?scp=0034230164&partnerID=8YFLogxK
U2 - 10.1016/S0169-4332(00)00374-3
DO - 10.1016/S0169-4332(00)00374-3
M3 - Article
AN - SCOPUS:0034230164
VL - 161
SP - 508
EP - 514
JO - Applied Surface Science
JF - Applied Surface Science
SN - 0169-4332
IS - 3
ER -
ID: 36307361